A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling nasal physiology changes due to septal perforations. | LitMetric

Modeling nasal physiology changes due to septal perforations.

Otolaryngol Head Neck Surg

Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.

Published: March 2013

Objective: To use computational fluid dynamics (CFD) technology to help providers understand (1) how septal perforations may alter nasal physiology and (2) how these alterations are influenced by perforation size and location.

Study Design: Computer simulation study.

Setting: Facial plastic and reconstructive surgery clinic.

Subjects And Methods: With the aid of medical imaging and modeling software, septal perforations of 1 and 2 cm in anterior, posterior, and superior locations were virtually created in a nasal cavity digital model. The CFD techniques were used to analyze airflow, nasal resistance, air conditioning, and wall shear stress.

Results: Bilateral nasal resistance was not significantly altered by a septal perforation. Airflow allocation changed, with more air flowing through the lower-resistance nasal cavity. This effect was greater for anterior and posterior perforations than for the superior location. At the perforation sites, there was less localized heat and moisture flux and wall shear stress in superior perforations compared with those in anterior or posterior locations. For anterior perforations, a larger size produced higher wall shear and velocity, whereas in posterior perforations, a smaller size produced higher wall shear and velocity.

Conclusion: Septal perforations may alter nasal physiology. In the subject studied, airflow allocation to each side was changed as air was shunted through the perforation to the lower-resistance nasal cavity. Anterior and posterior perforations caused larger effects than those in a superior location. Increasing the size of anterior perforations and decreasing the size of posterior perforations enhanced alterations in wall shear and velocity at the perforation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827982PMC
http://dx.doi.org/10.1177/0194599812472881DOI Listing

Publication Analysis

Top Keywords

wall shear
20
septal perforations
16
anterior posterior
16
posterior perforations
16
nasal physiology
12
nasal cavity
12
perforations
11
perforations alter
8
alter nasal
8
nasal resistance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!