Cryopreservation of insulin-secreting INS832/13 cells using a wheat protein formulation.

Cryobiology

Département des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec, Canada.

Published: April 2013

Diabetes is a global epidemic that affects about 285million people worldwide. For severely-ill patients with type I diabetes, whole pancreas or islet transplantation is the only therapeutic option. Islet transplantation is hindered by the scarce supply of fresh functional islets and limitations in cryopreservation procedures. Thus, improved cryopreservation procedures are needed to increase the availability of functional islets for clinical applications. Towards this goal, this work developed a cryopreservation protocol for pancreatic cells using proteins that accumulate naturally in freezing-tolerant plants. A preincubation of cells with 1% lecithin-1% glycerol-1% N-methylpyrrolidone followed by cryopreservation with partially purified proteins from wheat improved the viability and insulin-secreting properties of INS832/13 cells, compared to cryopreservation with 10% dimethyl sulfoxide (Me2SO). The major factor that enhanced the cryoprotective effect of the wheat protein formulation was preincubation with the lipid lecithin. Expression profiles of genes involved in metabolic and signaling functions of pancreatic cells (Ins, Glut1/2/3, Pdx1, Reg1α) were similar between fresh cells and those cryopreserved with the plant protein formulation. This novel plant-based technology, which is non-toxic and contains no animal material, is a promising alternative to Me2SO for cryopreservation of insulin-secreting pancreatic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cryobiol.2012.12.008DOI Listing

Publication Analysis

Top Keywords

protein formulation
12
pancreatic cells
12
cryopreservation insulin-secreting
8
ins832/13 cells
8
wheat protein
8
islet transplantation
8
functional islets
8
cryopreservation procedures
8
cryopreservation
7
cells
7

Similar Publications

Purpose: Therapeutic monoclonal antibodies (mAbs) are prone to degradation via aggregation and fragmentation. In this study, forced degradation of trastuzumab (TmAb) was explored in saline and in-vitro models having HO and exposed to UV light (case study 1) both bleomycin (BML) formulation and ferrous ions (Fe) (case study 2) and sodium hypochlorite (NaOCl) (case study 3).

Methods: Size exclusion chromatography, dynamic light scattering, spectroscopic analysis, and fluorescence microscope image processing was carried out for characterizing TmAb degradation.

View Article and Find Full Text PDF

Targeting murine metastatic cancers with cholera toxin A1-adjuvanted peptide vaccines.

Hum Vaccin Immunother

December 2025

TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

The dissemination of tumor cells with ensuing metastasis is responsible for most cancer-related deaths. Cancer vaccines may, by inducing tumor-specific effector T cells, offer a strategy to eliminate metastasizing tumor cells. However, several obstacles remain in the development of effective cancer vaccines, including the identification of adjuvants that enhance the evolvement and efficacy of tumor-specific T cells.

View Article and Find Full Text PDF

Exploring the impact of nano platinum-hydrogen saline on oxygen-induced retinopathy in neonatal rats.

J Matern Fetal Neonatal Med

December 2025

Department of Pediatrics, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan No.1 Hospital, Wuhan, China.

Objective: The objective of this study is to assess the impact of nano platinum-hydrogen saline (Pt NPs + H) on oxygen-induced retinopathy (OIR) in neonatal rats, with the goal to contribute new insights into the therapeutic strategies for retinopathy of prematurity.

Methods: Pt NPs + H formulation was synthesized to address OIR in a rat model. Subsequent examination included the assessment of retinal blood vessel distribution and morphology through hematoxylin and eosin (HE) and isolectin B4 (IB4) staining techniques.

View Article and Find Full Text PDF

Design of pH-responsive and amphiphilic pullulan-based biological macromolecule for gene delivery.

Int J Biol Macromol

January 2025

Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, D-07743 Jena, Germany; Jena Center for Soft Matters (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany. Electronic address:

Nanomedicine, particularly gene delivery, holds immense potential and offers promising therapeutic options. Non-viral systems gained attention due to their binding capacity, stability and scalability. Among these, natural polysaccharides, such as pullulan, are advantageous in terms of sustainability, biocompatibility and potential degradability.

View Article and Find Full Text PDF

Amphiphilic Polyaspartamide Derivatives with Cholesterol Introduction Enhanced Ex Vivo mRNA Transfection Efficiency to Natural Killer Cells.

Biomacromolecules

January 2025

Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.

Engineered natural killer (NK) cells eliminate cancer cells by overexpressing a chimeric antigen receptor, producing highly efficient and safe NK cell therapies. This study investigated the polyplex formulation for the fusion protein GreenLantern-natural killer group 2D (NKG2D) mRNA to evaluate its delivery efficacy into NK cells, wherein NKG2D on the surface of NK cells recognized its counterpart NKG2D ligands on cancer cells. Amphiphilic polyaspartamide derivatives Chol-PAsp(DET/CHE) were prepared by adding cyclohexylethylamine (CHE) and diethylenetriamine (DET) in the side chains and cholesterol (Chol) at the α-terminus to enhance endosomal escapability and optimize hydrophobicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!