Kinetics of ethanol production from sugarcane bagasse enzymatic hydrolysate concentrated with molasses under cell recycle.

Bioresour Technol

Faculdade de Engenharia Química, Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6066, 13083-970 Campinas, São Paulo, Brazil.

Published: February 2013

In this work, a kinetic model for ethanol fermentation from sugarcane bagasse enzymatic hydrolysate concentrated with molasses was developed. A model previously developed for fermentation of pure molasses was modified by the inclusion of a new term for acetic acid inhibition on microorganism growth rate and the kinetic parameters were estimated as functions of temperature. The influence of the hydrolysate on the kinetic parameters is analyzed by comparing with the parameters from fermentation of pure molasses. The impact of cells recycling in the kinetic parameters is also evaluated, as well as on the ethanol yield and productivity. The model developed described accurately most of the fermentations performed in several successive batches for temperatures from 30 to 38°C.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2012.12.045DOI Listing

Publication Analysis

Top Keywords

kinetic parameters
12
sugarcane bagasse
8
bagasse enzymatic
8
enzymatic hydrolysate
8
hydrolysate concentrated
8
concentrated molasses
8
model developed
8
fermentation pure
8
pure molasses
8
kinetics ethanol
4

Similar Publications

The objective of this study was to determine the effects of dietary agro-industrial by-products (AIBP) with different amounts of metabolizable energy (ME) and crude protein (CP) on fermentation (96 h) and gas production (GP) kinetics in vitro, as well as acceptability, animal performance, digestibility, and blood parameters in lambs. The gas production technique (GPT) and fermentation characteristics were used in an in vitro trial. This experiment used diets with ME contents of 6.

View Article and Find Full Text PDF

In the present study, we prepared Gum Acacia-cl-Acrylic acid-co-itaconic acid (GA-cl-AA-co-IA) hydrogels by free radical crosslink polymerization method for the efficient removal of Rhodamine-B (RhB) dye. The hydrogels were further characterized by different characterization techniques: Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Atomic force microscopy (AFM), Brunuer-Emmett-Teller (BET) and field emission scanning electron microscopy (FE-SEM) to confirm synthesis. The synthesis parameters were optimized by swelling studies, which were performed by gravimetric analysis method.

View Article and Find Full Text PDF

Directed evolution of glutamate decarboxylase B for enhancing its enzyme activity towards nearly neutral pHs based on error-prone PCR.

Int J Biol Macromol

December 2024

College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province 310035, People's Republic of China. Electronic address:

Glutamate decarboxylases (GADs) can catalyze the conversion of l-glutamate to γ-aminobutyric acid (GABA), while consuming one H. However, the GADs found so far are catalytically active in the pHs of 3.8-5.

View Article and Find Full Text PDF

Ge Epitaxy at Ultralow Growth Temperatures Enabled by a Pristine Growth Environment.

ACS Appl Electron Mater

December 2024

Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenberger Straße 69, 4040, Linz, Austria.

Germanium (Ge), the next-in-line group-IV material, bears great potential to add functionality and performance to next-generation nanoelectronics and solid-state quantum transport based on silicon (Si) technology. Here, we investigate the direct epitaxial growth of two-dimensional high-quality crystalline Ge layers on Si deposited at ultralow growth temperatures ( = 100-350 °C) and pristine growth pressures (≲10 mbar). First, we show that a decreasing does not degrade the crystal quality of homoepitaxial Ge/Ge(001) by comparing the point defect density using positron annihilation lifetime spectroscopy.

View Article and Find Full Text PDF

Cadmium pollution in water is becoming increasingly serious. Thus, the effective removal of Cd(II) from water has garnered attention. Aluminum hydroxide-modified attapulgite (ATP-AC) was prepared from basic aluminum acetate through a coprecipitation method that could efficiently adsorb Cd(II) in aqueous solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!