A novel computational method for the identification of plant alternative splice sites.

Biochem Biophys Res Commun

The School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China.

Published: February 2013

Alternative splicing (AS) increases protein diversity by generating multiple transcript isoforms from a single gene in higher eukaryotes. Up to 48% of plant genes exhibit alternative splicing, which has proven to be involved in some important plant functions such as the stress response. A hybrid feature extraction approach which combing the position weight matrix (PWM) with the increment of diversity (ID) was proposed to represent the base conservative level (BCL) near splice sites and the similarity level of two datasets, respectively. Using the extracted features, the support vector machine (SVM) was applied to classify alternative and constitutive splice sites. By the proposed algorithm, 80.8% of donor sites and 85.4% of acceptor sites were correctly classified. It is anticipated that the novel computational method is promising for the identification of AS sites in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2012.12.131DOI Listing

Publication Analysis

Top Keywords

splice sites
12
novel computational
8
computational method
8
alternative splicing
8
sites
6
method identification
4
identification plant
4
alternative
4
plant alternative
4
alternative splice
4

Similar Publications

The established consensus sequence for human 5' splice sites masks the presence of two major splice site classes defined by preferential base-pairing potentials with either U5 snRNA loop 1 or the U6 snRNA ACAGA box. The two 5' splice site classes are separable in genome sequences, sensitized by specific genotypes and associated with splicing complexity. The two classes reflect the commitment to 5' splice site usage occurring primarily during 5' splice site transfer to U6 snRNA.

View Article and Find Full Text PDF

Study on the metastatic mechanism of LINC00115 in adenocarcinoma of the Esophagogastric junction.

Hum Mol Genet

January 2025

Department of Thoracic Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China.

Adenocarcinoma of the esophagogastric junction (AEG) is a common and deadly cancer, and an in-depth investigation of its molecular mechanisms of metastasis is crucial for discovering new therapeutic targets. This study explores the role of the long non-coding RNA (lncRNA) LINC00115 in AEG metastasis and its underlying mechanisms. Through the analysis of 108 pairs of AEG cancer tissues and matched adjacent tissues, we found a significant upregulation of LINC00115 in AEG tissues, closely associated with TNM staging and lymph node metastasis.

View Article and Find Full Text PDF

Objective: To test whether messenger RNA (mRNA) splicing is altered in neutrophils from patients with systemic lupus erythematosus (SLE) and can produce neoantigens.

Methods: RNA sequencing of neutrophils from patients with SLE (n = 15) and healthy donors (n = 12) were analyzed for mRNA splicing using the RiboSplitter pipeline, an event-focused tool based on SplAdder with subsequent translation and protein domain annotation. RNA sequencing from SARS-CoV2-infected individuals was used as an additional comparator.

View Article and Find Full Text PDF

Comprehensive analysis of the xbp1 gene in Pacific abalone Haliotis discus hannai: Structure, expression, and role in heat stress response.

Int J Biol Macromol

January 2025

The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China. Electronic address:

The present study explores the x-box binding protein 1 (xbp1) gene in Haliotis discus hannai (Pacific abalone), focusing on its structure, expression, and functional role under heat stress. Southern blot revealed two copies of xbp1 in the intestine and mantle, one in the gill and muscle, and no detection in the digestive gland. mRNA expression levels were highest in the gill, followed by the mantle, intestine, and muscle, with the digestive gland showing the lowest expression.

View Article and Find Full Text PDF

5-Methylcytosine-modified circRNA-CCNL2 regulates vascular remdeling in hypoxic pulmonary hypertension through binding to FXR2.

Int J Biol Macromol

January 2025

Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin 150081, PR China. Electronic address:

Pulmonary hypertension (PH) is a malignant cardiovascular disease with a complex etiology. 5-Methylcytosine (m5C) is a post-transcriptional RNA modification identified in both stable and highly abundant RNAs, with a lower frequency of occurrence in circular RNAs (circRNAs). Nevertheless, the function of m5C-modified circRNAs in the pathogenesis of PH remains uncertain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!