Determination of ethylenediaminetetraacetic acid in nuclear waste by high-performance liquid chromatography coupled with electrospray mass spectrometry.

J Chromatogr A

Laboratoire d'Analyses en Soutien aux Exploitants du CEA de SACLAY, DEN/DANS/DPC/SEARS/LASE, Bât 459, 91191 Gif-sur-Yvette, France.

Published: February 2013

EDTA is a chelating agent that has been used in decontamination processes. Its quantification is required for nuclear waste management because it affects the mobility of radionuclides and metals in environment and, thus, can harm the safety of the storage. Ion-pair chromatography coupled with electrospray mass spectrometry detection is a convenient method for quantitative analysis of EDTA but EDTA should be present as a single anionic chelate form. However, radioactive liquid wastes contain high concentrations of heavy metals and salts and consequently, EDTA is present as several chelates. Speciation studies were carried out to choose a metal cation to be added in excess to the solution to obtain a major chelate form. Fe is the predominant cation and Fe(III)-EDTA is thermodynamically favored but these speciation studies showed that ferric hydroxide precipitated above pH 2. Consequently, it was not possible to quantify EDTA as Fe(III)-EDTA complex. Therefore, Ni(2+) was chosen but its use implied pretreatment with a base of the solution to eliminate Fe. Deuterated EDTA was used as tracer in order to validate the whole procedure, from the treatment with a base to the final analysis by HPLC-ESI-MS. This analytical method was successfully applied for EDTA quantification in two real effluents resulting from a nuclear liquid waste process. A recovery rate between 60 and 80% was obtained. The limit of detection of this method was determined at 34×10(-9)mol L(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2012.10.055DOI Listing

Publication Analysis

Top Keywords

nuclear waste
8
chromatography coupled
8
coupled electrospray
8
electrospray mass
8
mass spectrometry
8
chelate form
8
speciation studies
8
edta
7
determination ethylenediaminetetraacetic
4
ethylenediaminetetraacetic acid
4

Similar Publications

Newly isolated bacterium and arbuscular mycorrhizal fungus effectively reduce the root cadmium concentration and increase the root biomass of Ophiopogon japonicus.

J Hazard Mater

January 2025

School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China. Electronic address:

Soil cadmium (Cd) contamination is one of the major challenges in food production. This has led to above-maximum threshold accumulation of Cd in O. japonicus roots.

View Article and Find Full Text PDF

Radioactive iodine, a key waste product of nuclear energy, has been a significant concern among nuclear materials because of its high volatility and its ability to easily enter the human metabolism. Porous materials containing a large number of N-heterocyclic units such as carbazole in the skeletons use as effective adsorbents showing high iodine capture capacities. Herein, a new carbazole-bismaleimide-based hyper-cross-linked porous organic polymer (CzBMI-POP) was successfully prepared from a new tetra-armed carbazole-maleimide monomer (Bis-Cz(BMI)), which contains biscarbazole units and maleimide side groups.

View Article and Find Full Text PDF

Dealing with radioactive waste, particularly from various industrial processes, poses significant challenges. This paper explores the use of lithium aluminate borate (Li-Al-B) glass matrix as an alternative method for immobilizing radioactive waste, focusing specifically on waste generated in tin smelting industries, known as tin slag. The study primarily concentrates on transforming tin slag, a byproduct abundant in Natural Occurring Radioactive Material (NORM), into a stable and safe form for disposal.

View Article and Find Full Text PDF

To investigate the potential of activated carbon from palm kernel shell waste for Tc-radiolabeled nanocarbon aerosol, a new production technology for carbon-based Tc-radioaerosol from such a waste was developed. Treated-palm shell charcoal (t-PSC) was prepared by hydrothermal method to increase the surface area, followed by Tc radiolabelling optimization. The optimal Tc radiolabeling conditions resulted in an adsorption capacity of 21.

View Article and Find Full Text PDF

Recovered water - HO from the F[FDG] production as liquid radioactive waste.

Appl Radiat Isot

January 2025

Department of Medical Physics, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Lodz, Poland; Department of Medical Imaging Technology, Medical University of Lodz, Ul. Lindleya 6, 90-131, Łódź, Poland.

In this study, ten recovered water samples were analysed using gamma spectrometry and Liquid Scintillation Counting techniques for identification of radioactive impurities (quality and quantity) and for radioactive waste qualifications. The presence of several radioactive isotopes of H, Co Mn in the recovered [O] water irradiated with 11 MeV protons used to produce [F] fluoride by the O(p,n)F reaction has been confirmed. Radioactive impurities were generated directly in enriched water or washed out from activated Havar foil, or tantalum body target material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!