Dlx1&2-dependent expression of Zfhx1b (Sip1, Zeb2) regulates the fate switch between cortical and striatal interneurons.

Neuron

Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco (UCSF), San Francisco, CA 94158-2324, USA.

Published: January 2013

Mammalian pallial (cortical and hippocampal) and striatal interneurons are both generated in the embryonic subpallium, including the medial ganglionic eminence (MGE). Herein we demonstrate that the Zfhx1b (Sip1, Zeb2) zinc finger homeobox gene is required in the MGE, directly downstream of Dlx1&2, to generate cortical interneurons that express Cxcr7, MafB, and cMaf. In its absence, Nkx2-1 expression is not repressed, and cells that ordinarily would become cortical interneurons appear to transform toward a subtype of GABAergic striatal interneurons. These results show that Zfhx1b is required to generate cortical interneurons, and suggest a mechanism for the epilepsy observed in humans with Zfhx1b mutations (Mowat-Wilson syndrome).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547499PMC
http://dx.doi.org/10.1016/j.neuron.2012.11.035DOI Listing

Publication Analysis

Top Keywords

striatal interneurons
12
cortical interneurons
12
zfhx1b sip1
8
sip1 zeb2
8
generate cortical
8
interneurons
6
cortical
5
dlx1&2-dependent expression
4
zfhx1b
4
expression zfhx1b
4

Similar Publications

We developed a versatile 'IHC/LCM-Seq' method for spatial transcriptomics of immunohistochemically detected neurons collected with laser-capture microdissection (LCM). IHC/LCM-Seq uses aluminon and polyvinyl sulfonic acid for inventive RNA-preserving strategies to maintain RNA integrity in free-floating sections of 4% formaldehyde-fixed brains. To validate IHC/LCM-Seq, we first immunostained and harvested striatal cholinergic interneurons with LCM.

View Article and Find Full Text PDF

Striatum, the input stage of the basal ganglia, is important for sensory-motor integration, initiation and selection of behavior, as well as reward learning. Striatum receives glutamatergic inputs from mainly cortex and thalamus. In rodents, the striatal projection neurons (SPNs), giving rise to the direct and the indirect pathway (dSPNs and iSPNs, respectively), account for 95% of the neurons, and the remaining 5% are GABAergic and cholinergic interneurons.

View Article and Find Full Text PDF

Phosphodiesterase 2 A (PDE2A) function is stimulated by cGMP to catabolize cAMP. However, neurological and neurochemical effects of PDE2A deficiency are poorly understood. To address this gap, we studied behavioral characteristics and cerebral morpho-chemical changes of adult male heterozygous C57BL/6-PDE2A+/- (HET), and wild type C57BL/6-PDE2A+/+ (WT) mice.

View Article and Find Full Text PDF

The posterior "tail" region of the striatum receives dense innervation from sensory brain regions and is important for behaviors that require sensorimotor integration. The output neurons of the striatum, D1 and D2 striatal projection neurons (SPNs), which make up the direct and indirect pathways, are thought to play distinct functional roles, although it remains unclear if these neurons show cell-type-specific differences in their response to sensory stimuli. Here, we examine the strength of synaptic inputs onto D1 and D2 SPNs following the stimulation of upstream auditory pathways.

View Article and Find Full Text PDF

Synaptic modulation of glutamate in striatum of the YAC128 mouse model of Huntington disease.

Neurobiol Dis

December 2024

Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada. Electronic address:

Background: Altered balance between striatal direct and indirect pathways contributes to early motor, cognitive and psychiatric symptoms in Huntington disease (HD). While degeneration of striatal D2-type dopamine receptor (D2)-expressing indirect pathway medium spiny neurons (iMSNs) occurs prior to that of D1-type dopamine receptor (D1)-expressing direct pathway neurons, altered corticostriatal synaptic function precedes degeneration. D2-mediated signaling on iMSNs reduces their excitability and promotes endocannabinoid (eCB) synthesis, suppressing glutamate release from cortical afferents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!