Influence of N-terminal residue composition on the structure of proline-containing b2+ ions.

J Phys Chem A

Department of Chemistry and Biochemistry, The University of Arizona, 1306 East University Boulevard, P.O. Box 210041, Tucson, Arizona 85721-0041, USA.

Published: February 2013

To probe the structural implications of the proline residue on its characteristic peptide fragmentation patterns, in particular its unusual cleavage at its C-terminus in formation of a b(2) ion in XxxProZzz sequences, the structures of a series of proline-containing b(2)(+) ions were studied by using action infrared multiphoton dissociation (IRMPD) spectroscopy and fragment ion hydrogen-deuterium exchange (HDX). Five different Xxx-Pro b(2)(+) ions were studied, with glycine, alanine, isoleucine, valine, or histidine in the N-terminal position. The residues selected feature different sizes, chain lengths, and gas phase basicities to explore whether the structure of the N-terminal residue influences the Xxx-Pro b(2)(+) ion structure. In proteins, the proline side chain-to-backbone attachment causes its peptide bonds to be in the cis conformation more than any other amino acid, although trans is still favored over cis. However, HP is the only b(2)(+) ion studied here that forms the diketopiperazine exclusively. The GP, AP, IP, and VP b(2)(+) ions formed from protonated tripeptide precursors predominantly featured oxazolone structures with small diketopiperazine contributions. In contrast to the b(2)(+) ions generated from tripeptides, synthetic cyclic dipeptides VP and HP were confirmed to have exclusive diketopiperazine structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641857PMC
http://dx.doi.org/10.1021/jp306759fDOI Listing

Publication Analysis

Top Keywords

b2+ ions
20
n-terminal residue
8
proline-containing b2+
8
ions studied
8
xxx-pro b2+
8
b2+ ion
8
b2+
7
ions
5
influence n-terminal
4
residue composition
4

Similar Publications

Controllable Nano-Crystallization in Fluoroborosilicate Glass Ceramics for Broadband Visible Photoluminescence.

Nanomaterials (Basel)

January 2025

Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.

A transparent fluoroborosilicate glass ceramic was designed for the controllable precipitation of fluoride nanocrystals and to greatly enhance the photoluminescence of active ions. Through the introduction of BO into fluorosilicate glass, the melting temperature was decreased from 1400 to 1050 °C, and the abnormal crystallization in the fabrication process of fluorosilicate glass was avoided. More importantly, the controlled crystallizations of KZnF and KYbF in fluoroborosilicate glass ceramics enhanced the emission of Mn and Mn-Yb dimers by 6.

View Article and Find Full Text PDF

In this work, the conventional melt quenching approach is used to synthesize the Pr doped NaF-BiO-BO-SiO (NBBS) glasses. The influence of Pr ions on their spectroscopic and structural characteristics in glass network is investigated. The amorphous nature of the samples has been amply verified by X-ray diffraction patterns.

View Article and Find Full Text PDF

Functionally Graded Oxide Scale on (Hf,Zr,Ti)B Coating with Exceptional Ablation Resistance Induced by Unique Ti Dissolving.

Adv Sci (Weinh)

January 2025

Shaanxi Key Laboratory of Fiber Reinforced Light-Weight Composites, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China.

Multicomponent Ti-containing ultra-high temperature ceramics (UHTCs) have emerged as more promising ablation-resistant materials than typical UHTCs for applications above 2000 °C. However, the underlying mechanism of Ti improving the ablation performance is still obscure. Here, (Hf,Zr,Ti)B coatings are fabricated by supersonic atmospheric plasma spraying, and the effects of Ti content on the ablation performance under an oxyacetylene flame are investigated.

View Article and Find Full Text PDF

Contained arsenic (As) and unsafe brackish groundwater irrigation can lead to serious As pollution and increase the ecological risk in cultivated soils. However, little is known about how Fe oxides and microbes affect As migration during soil irrigation processes involving arsenic-contaminated brackish groundwater. In this study, the samples (porewater and soil) were collected through the dynamic soil column experiments to explore the As migration process and its effect factors during soil irrigation.

View Article and Find Full Text PDF

Synthesis of nickel-boron/reduced graphene oxide for efficient and stable lithium-ion storage.

Heliyon

December 2024

Radiation Fusion Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.

Electrode material capacities and cycle performances must improve for large-scale applications such as energy storage systems. Numerous investigations have developed cathode materials to improve lithium-ion batteries (LIBs) performance: however, few have examined new anode materials. In this study, we synthesized a Ni-B/reduced graphene oxide (RGO) composites via a simple chemical reaction method to enhance the stability of electrodes in LIBs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!