Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the first paper of this series [C. Avendaño, T. Lafitte, A. Galindo, C. S. Adjiman, G. Jackson, and E. A. Müller, J. Phys. Chem. B2011, 115, 11154] we introduced the SAFT-γ force field for molecular simulation of fluids. In our approach, a molecular-based equation of state (EoS) is used to obtain coarse-grained (CG) intermolecular potentials that can then be employed in molecular simulation over a wide range of thermodynamic conditions of the fluid. The macroscopic experimental data for the vapor-liquid equilibria (saturated liquid density and vapor pressure) of a given system are represented with the SAFT-VR Mie EoS and used to estimate effective intermolecular parameters that provide a good description of the thermodynamic properties by exploring a wide parameter space for models based on the Mie (generalized Lennard-Jones) potential. This methodology was first used to develop a simple single-segment CG Mie model of carbon dioxide (CO2) which allows for a reliable representation of the fluid-phase equilibria (for which the model was parametrized), as well as an accurate prediction of other properties such as the enthalpy of vaporization, interfacial tension, supercritical density, and second-derivative thermodynamic properties (thermal expansivity, isothermal compressibility, heat capacity, Joule-Thomson coefficient, and speed of sound). In our current paper, the methodology is further applied and extended to develop effective SAFT-γ CG Mie force fields for some important greenhouse gases including carbon tetrafluoride (CF4) and sulfur hexafluoride (SF6), modeled as simple spherical molecules, and for long linear alkanes including n-decane (n-C10H22) and n-eicosane (n-C20H42), modeled as homonuclear chains of spherical Mie segments. We also apply the SAFT-γ methodology to obtain a CG homonuclear two-segment Mie intermolecular potential for the more challenging polar and asymmetric compound 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), a novel replacement refrigerant with promising properties. The description of the fluid-phase behavior and the prediction of the other thermophysical properties obtained by molecular simulation using our SAFT-γ CG Mie force fields are found to be of comparable quality (and sometimes superior) to that obtained using the more sophisticated all-atom (AA) and united-atom (UA) models commonly employed in the field. We should emphasize that though the focus of our current work is on simple homonuclear models, the SAFT-γ methodology is based on a group contribution methodology which is naturally suited to the development of more sophisticated heteronuclear models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp306442b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!