SERS primers and their mode of action for pathogen DNA detection.

Anal Chem

Centre for Molecular Nanometrology, WestCHEM, Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom.

Published: February 2013

SERS primers have been used to directly detect specific PCR products utilizing the difference in adsorption of single-stranded and double-stranded DNA onto nanoparticle surfaces. Herein, seven parameters important for improved positive SERS assays for real applications were investigated. First, we applied a model system for optimization experiments, followed by a PCR assay to detect pathogen DNA, and then the introduction of a new assay that utilizes the 5'→3' exonuclease activity of Taq DNA polymerase to partly digest the SERS probe, generating dye-labeled single-stranded DNA increasing the SERS signals for detection of pathogen DNA. Applying the model system, it was found that uni-molecular SERS primers perform better than bi-molecular SERS primers. However, within the PCR assays, it was found that uni- and bi-molecular SERS primers performed very similarly, and the most reproducible results were obtained using the 5'→3' exonuclease digestion assay. These SERS-based assays offer new routes over conventional fluorescence-based techniques without compromising sensitivity or selectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac302254hDOI Listing

Publication Analysis

Top Keywords

sers primers
20
pathogen dna
12
sers
8
model system
8
5'→3' exonuclease
8
bi-molecular sers
8
dna
6
primers mode
4
mode action
4
action pathogen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!