Even though the therapeutic efficacy of numerous antimicrobial drugs has been well established, inefficient delivery can result in an inadequate therapeutic index. Gold nanoparticles have unique physicochemical properties such as large surface area to mass ratio and functionalizable structure. These properties can be applied to facilitate the administration of antimicrobial drugs, thereby overcoming some of the limitations in traditional antimicrobial therapeutics. In this study, gold nanospheres were used as a drug carrier system for gentamicin delivery to Staphylococcal infected foci. Conjugation of gentamicin with gold nanospheres was performed in HEPES buffer. The attachment of gentamicin to gold nanospheres was confirmed by UV/Vis spectroscopy. The HPLC and atomic absorption spectrometer analyses showed that 347 gentamicin molecules were attached to each gold nanosphere. Minimum inhibitory concentration and minimum bactericidal concentration studies showed the enhanced antibacterial effect of gentamicin-gold nanospheres complex in comparison with free gentamicin. The biodistribution study showed the localization of the complex at the site of Staphylococcal infection foci with high sensitivity in mouse model.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10717544.2012.746402DOI Listing

Publication Analysis

Top Keywords

gold nanospheres
12
gentamicin-gold nanospheres
8
delivery staphylococcal
8
staphylococcal infected
8
infected foci
8
antimicrobial drugs
8
gentamicin gold
8
nanospheres
5
gold
5
gentamicin
5

Similar Publications

Morphological Features Influence the Drug Loading and Delivery Efficacy of Photoactivatable Gold Nanocarriers for Antitumor Photo/Chemotherapy.

ACS Appl Mater Interfaces

January 2025

Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China.

Photoactivatable gold nanocarriers are transforming antitumor therapies by leveraging their distinctive physicochemical properties, enabling targeted drug delivery and enhanced therapeutic efficacy in cancer treatment. This study systematically investigates how surface topography and morphology of gold nanocarriers influence drug loading capacity, light-to-heat conversion efficiency, and overall therapeutic performance in photo/chemotherapy. We synthesized four distinct morphologies of gold nanoparticles: porous gold nanocups (PAuNCs), porous gold nanospheres (PAuNSs), solid gold nanocups (SAuNCs), and solid gold nanospheres (SAuNSs).

View Article and Find Full Text PDF

Bactericidal activity of gold and silver nanoparticles in solution and supported on polyhihydroxybutyrate nanospheres.

Int J Biol Macromol

January 2025

Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico. Electronic address:

This work presents the effect of Polyhydroxybutyrate nanospheres (PHB-NSs) on the bacterial activity of plasmonic nanoparticles (NPs). The PHB-NSs were used as a substrate for the metal-NPs. Silver and gold NPs in colloidal solution were synthesized by chemical reduction, while PHB-NSs were synthesized by a physical method.

View Article and Find Full Text PDF

A SiO@Au@Polyaniline (SiO@Au@PAN) system has been successfully fabricated leveraging the synergistic effects of gold nanoparticles (AuNPs) to realize enhanced photothermal performance. The SiO@Au@PAN exhibited strong near-infrared (NIR) absorbance, excellent photothermal conversion efficiency, good dispersibility, and outstanding photostability. The SiO nanospheres as the template provided numerous binding sites for coating of AuNPs.

View Article and Find Full Text PDF

Effects of Au Addition on the Performance of Thermal Electronic Noses Based on Porous CuO-SnO Nanospheres.

Nanomaterials (Basel)

December 2024

Graduate School of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.

The electronic nose is an increasingly useful tool in many fields and applications. Our thermal electronic nose approach, based on nanostructured metal oxide chemiresistors in a thermal gradient, has the advantage of being tiny and therefore integrable in portable and wearable devices. Obviously, a wise choice of the nanomaterial is crucial for the device's performance and should therefore be carefully considered.

View Article and Find Full Text PDF

Chiral molecules are ubiquitous in nature and biological systems, where the unique optical and physical properties of chiral nanoparticles are closely linked to their shapes. Synthesizing chiral plasmonic nanomaterials with precise structures and tunable sizes is essential for exploring their applications. This study presents a method for growing three-dimensional chiral gold nanoflowers (Au NFs) derived from trisoctahedral (TOH) nanocrystals using D-cysteine and L-cysteine as chiral inducers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!