Revisiting point FRAP to quantitatively characterize anomalous diffusion in live cells.

J Phys Chem B

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.

Published: February 2013

Fluorescence recovery after photobleaching (FRAP) is widely used to interrogate diffusion and binding of proteins in live cells. Herein, we apply two-photon excited FRAP with a diffraction limited bleaching and observation volume to study anomalous diffusion of unconjugated green fluorescence protein (GFP) in vitro and in cells. Experiments performed on dilute solutions of GFP reveal that reversible fluorophore bleaching can be mistakenly interpreted as anomalous diffusion. We derive a reaction-diffusion FRAP model that includes reversible photobleaching, and demonstrate that it properly accounts for these photophysics. We then apply this model to investigate the diffusion of GFP in HeLa cells and polytene cells of Drosophila larval salivary glands. GFP exhibits anomalous diffusion in the cytoplasm of both cell types and in HeLa nuclei. Polytene nuclei contain optically resolvable chromosomes, permitting FRAP experiments that focus separately on chromosomal or interchrosomal regions. We find that GFP exhibits anomalous diffusion in chromosomal regions but diffuses normally in regions devoid of chromatin. This observation indicates that obstructed transport through chromatin and not crowding by macromolecules is a source of anomalous diffusion in polytene nuclei. This behavior is likely true in other cells, so it will be important to account for this type of transport physics and for reversible photobleaching to properly interpret future FRAP experiments on DNA-binding proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp310348sDOI Listing

Publication Analysis

Top Keywords

anomalous diffusion
24
diffusion
8
live cells
8
reversible photobleaching
8
gfp exhibits
8
exhibits anomalous
8
polytene nuclei
8
frap experiments
8
frap
6
anomalous
6

Similar Publications

The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.

View Article and Find Full Text PDF

Superdiffusion is usually defined as a random walk process of a molecule, in which the time evolution of the mean-squared displacement, σ2, of the molecule is a power function of time, σ2(t)∼t2/γ, with γ∈(1,2). An equation with a Riesz-type fractional derivative of the order γ with respect to a spatial variable (a fractional superdiffusion equation) is often used to describe superdiffusion. However, this equation leads to the formula σ2(t)=κt2/γ with κ=∞, which, in practice, makes it impossible to define the parameter γ.

View Article and Find Full Text PDF

Single-particle tracking reveals heterogeneous PIEZO1 diffusion.

Biophys J

January 2025

Department of Physiology & Biophysics, UC Irvine, Irvine, California; Department of Biomedical Engineering, UC Irvine, Irvine, California; Center for Complex Biological Systems, UC Irvine, Irvine, California; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, California. Electronic address:

The mechanically-activated ion channel PIEZO1 is critical to numerous physiological processes, and is activated by diverse mechanical cues. The channel is gated by membrane tension and has been found to be mobile in the plasma membrane. We employed single particle tracking (SPT) of endogenous, tdTomato-tagged PIEZO1 using Total Internal Reflection Fluorescence Microscopy in live cells.

View Article and Find Full Text PDF

Background: Improving the compatibility between polylactic acid (PLA) and lignin is crucial for developing innovative PLA-based controlled release systems for pesticides. This study addresses the challenge of enhancing the compatibility of alkali lignin (AL) with PLA by acetylated lignin (ACL). The main aim is to synthesize and evaluate pesticide-loaded microspheres for controlled release performance using fluazinam (FZ) as the model pesticide.

View Article and Find Full Text PDF

Continuous Near-Bed Movements of Microplastics in Open Channel Flows: Statistical Analysis.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.

The ubiquitous distribution of microplastics (MPs) in aquatic environments is linked to their transport in rivers and streams. However, the specific mechanism of bedload microplastic (MP) transport, notably their stochastic behaviors, remains an underexplored area. To investigate this, particle tracking velocimetry was employed to examine the continuous near-bed movements of four types of MPs under nine setups with different experimental conditions in a laboratory flume, with an emphasis on their streamwise transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!