Sugar beet (Beta vulgaris altissima) is a biennial root crop with an absolute requirement for cold exposure to bolt and flower, a process called vernalization. Global DNA methylation variations have been reported during vernalization in several plants. However, few genes targeted by DNA methylation during vernalization have been described. The objectives of this study were to identify differentially methylated regions and to study their involvement in bolting induction and tolerance. Restriction landmark genome scanning was applied to DNA from shoot apical meristems of sugar beet genotypes, providing a direct quantitative epigenetic assessment of several CG methylated genes without prior knowledge of gene sequence. Several differentially methylated regions exhibiting variations of gene-body DNA methylation and expression during cold exposure and/or between genotypes were identified, including an AROGENATE DEHYDRATASE and two RNA METHYLCYTOSINE TRANSFERASE sequences. One RNA METHYLCYTOSINE TRANSFERASE sequence displayed gene-body hypermethylation and activation of expression, while the other was hypomethylated and inhibited by cold exposure. Global RNA methylation and phenolic compound levels changed during cold exposure in a genotype-dependent way. The use of methyl RNA immunoprecipitation of total RNA and reverse transcription-PCR analysis revealed mRNA methylation in a vernalized bolting-resistant genotype for the FLOWERING LOCUS 1 gene, a repressor of flowering. Finally, Arabidopsis mutants for RNA METHYLCYTOSINE TRANSFERASE and AROGENATE DEHYDRATASE were shown to exhibit, under different environmental conditions, early or late bolting phenotypes, respectively. Overall, the data identified functional targets of DNA methylation during vernalization in sugar beet, and it is proposed that RNA methylation and phenolic compounds play a role in the floral transition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/ers363 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Center for Clinical and Epidemiologic Research, Beijing An Zhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China; National Clinical Research Center of Cardiovascular Diseases, Beijing, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China; The Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China. Electronic address:
Background: Ambient temperatures and PM can trigger myocardial infarction (MI), while little is known about the complex interplay between these two factors on MI, especially morbidity.
Objectives: To investigate bidirectional effect modifications of temperature and PM on MI morbidity and mortality.
Methods: A time-stratified case-crossover study was conducted utilizing high-resolution data of temperature and PM, along with 498,077 MI cases from the citywide registry in Beijing, China from 2007 to 2021.
Public Health
January 2025
Department of Neurology, First Affiliated Hospital of Gannan Medical Univesity, Ganzhou, 341000, Jiangxi, China. Electronic address:
Objectives: The aim of this study was to investigate the associations, potential effects, and interactions between short-term exposure to air pollution and the risk of ischemic stroke (IS).
Study Design: An ecological study.
Methods: Daily data on IS incidents, air pollution, and meteorological conditions were collected from 2017 to 2021 in Gannan.
FASEB J
January 2025
Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands.
Brown adipose tissue (BAT) is a metabolically highly active tissue that dissipates energy stored within its intracellular triglyceride droplets as heat. Others have previously utilized MRI to show that the fat fraction of human supraclavicular BAT (scBAT) decreases upon cold exposure, compared with baseline (i.e.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Dermatology, University Medical Center Regensburg, 93053 Regensburg, Germany.
Cold atmospheric plasma (CAP) has antimicrobial properties and is also known to stimulate the immune system. These properties could be useful for the development of a novel therapeutic or preventive strategy against respiratory infections in the upper respiratory tract (URT) such as ventilator-associated pneumonia (VAP) without inducing an immune overreaction. This study investigated the cellular responses of polymorphonuclear neutrophils (PMNs) after exposure to CAP in a three-dimensional (3D) model of the URT.
View Article and Find Full Text PDFNew Phytol
January 2025
Amsterdam Institute for Life and Environment (A-LIFE), Section Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands.
Lichens play important roles in habitat formation and community succession in polar and alpine ecosystems. Despite their significance, the ecological effects of lichen traits remain poorly researched. We propose a trait trade-off for managing light exposure based on climatic harshness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!