Identification of differentially methylated regions during vernalization revealed a role for RNA methyltransferases in bolting.

J Exp Bot

Université d'Orléans, UFR/Faculté des Sciences, UPRES EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328 ARCHE, rue de Chartres, BP6759, 45067 Orléans cedex 2, France.

Published: January 2013

Sugar beet (Beta vulgaris altissima) is a biennial root crop with an absolute requirement for cold exposure to bolt and flower, a process called vernalization. Global DNA methylation variations have been reported during vernalization in several plants. However, few genes targeted by DNA methylation during vernalization have been described. The objectives of this study were to identify differentially methylated regions and to study their involvement in bolting induction and tolerance. Restriction landmark genome scanning was applied to DNA from shoot apical meristems of sugar beet genotypes, providing a direct quantitative epigenetic assessment of several CG methylated genes without prior knowledge of gene sequence. Several differentially methylated regions exhibiting variations of gene-body DNA methylation and expression during cold exposure and/or between genotypes were identified, including an AROGENATE DEHYDRATASE and two RNA METHYLCYTOSINE TRANSFERASE sequences. One RNA METHYLCYTOSINE TRANSFERASE sequence displayed gene-body hypermethylation and activation of expression, while the other was hypomethylated and inhibited by cold exposure. Global RNA methylation and phenolic compound levels changed during cold exposure in a genotype-dependent way. The use of methyl RNA immunoprecipitation of total RNA and reverse transcription-PCR analysis revealed mRNA methylation in a vernalized bolting-resistant genotype for the FLOWERING LOCUS 1 gene, a repressor of flowering. Finally, Arabidopsis mutants for RNA METHYLCYTOSINE TRANSFERASE and AROGENATE DEHYDRATASE were shown to exhibit, under different environmental conditions, early or late bolting phenotypes, respectively. Overall, the data identified functional targets of DNA methylation during vernalization in sugar beet, and it is proposed that RNA methylation and phenolic compounds play a role in the floral transition.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/ers363DOI Listing

Publication Analysis

Top Keywords

cold exposure
16
dna methylation
16
differentially methylated
12
methylated regions
12
sugar beet
12
rna methylcytosine
12
methylcytosine transferase
12
rna
8
methylation vernalization
8
arogenate dehydratase
8

Similar Publications

Bidirectional effect modifications of temperature and PM on myocardial infarction morbidity and mortality in Beijing, China from 2007 to 2021.

Ecotoxicol Environ Saf

January 2025

Center for Clinical and Epidemiologic Research, Beijing An Zhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China; National Clinical Research Center of Cardiovascular Diseases, Beijing, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China; The Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China. Electronic address:

Background: Ambient temperatures and PM can trigger myocardial infarction (MI), while little is known about the complex interplay between these two factors on MI, especially morbidity.

Objectives: To investigate bidirectional effect modifications of temperature and PM on MI morbidity and mortality.

Methods: A time-stratified case-crossover study was conducted utilizing high-resolution data of temperature and PM, along with 498,077 MI cases from the citywide registry in Beijing, China from 2007 to 2021.

View Article and Find Full Text PDF

Objectives: The aim of this study was to investigate the associations, potential effects, and interactions between short-term exposure to air pollution and the risk of ischemic stroke (IS).

Study Design: An ecological study.

Methods: Daily data on IS incidents, air pollution, and meteorological conditions were collected from 2017 to 2021 in Gannan.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) is a metabolically highly active tissue that dissipates energy stored within its intracellular triglyceride droplets as heat. Others have previously utilized MRI to show that the fat fraction of human supraclavicular BAT (scBAT) decreases upon cold exposure, compared with baseline (i.e.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) has antimicrobial properties and is also known to stimulate the immune system. These properties could be useful for the development of a novel therapeutic or preventive strategy against respiratory infections in the upper respiratory tract (URT) such as ventilator-associated pneumonia (VAP) without inducing an immune overreaction. This study investigated the cellular responses of polymorphonuclear neutrophils (PMNs) after exposure to CAP in a three-dimensional (3D) model of the URT.

View Article and Find Full Text PDF

Flexible or fortified? How lichens balance defence strategies across climatic harshness gradients.

New Phytol

January 2025

Amsterdam Institute for Life and Environment (A-LIFE), Section Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands.

Lichens play important roles in habitat formation and community succession in polar and alpine ecosystems. Despite their significance, the ecological effects of lichen traits remain poorly researched. We propose a trait trade-off for managing light exposure based on climatic harshness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!