Lipoic acid (LA) is a naturally occurring compound with antioxidant properties. Recent attention has been focused on the potential beneficial effects of LA on obesity and related metabolic disorders. Dietary supplementation with LA prevents insulin resistance and upregulates adiponectin, an insulin-sensitizing adipokine, in obese rodents. The aim of this study was to investigate the direct effects of LA on adiponectin production in cultured adipocytes, as well as the potential signaling pathways involved. For this purpose, fully differentiated 3T3-L1 adipocytes were treated with LA (1-500 μM) during 24 h. The amount of adiponectin secreted to media was detected by ELISA, while adiponectin mRNA expression was determined by RT-PCR. Treatment with LA induced a dose-dependent inhibition on adiponectin gene expression and protein secretion. Pretreatment with the PI3K inhibitor LY294002 inhibited adiponectin secretion and mRNA levels, and significantly potentiated the inhibitory effect of LA on adiponectin secretion. The AMPK activator AICAR also reduced adiponectin production, but surprisingly, it was able to reverse the LA-induced inhibition of adiponectin. The JNK inhibitor SP600125 and the MAPK inhibitor PD98059 did not modify the inhibitory effect of LA on adiponectin. In conclusion, our results revealed that LA reduces adiponectin secretion in 3T3-L1 adipocytes, which contrasts with the stimulation of adiponectin described after in vivo supplementation with LA, suggesting that an indirect mechanism or some in vivo metabolic processing is involved.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13105-012-0230-7DOI Listing

Publication Analysis

Top Keywords

adiponectin
13
adiponectin production
12
3t3-l1 adipocytes
12
adiponectin secretion
12
lipoic acid
8
inhibition adiponectin
8
inhibitory adiponectin
8
acid inhibits
4
inhibits adiponectin
4
production 3t3-l1
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!