The identification of bacteria by their volatilomes is of interest to many scientists and clinicians as it holds the promise of diagnosing infections in situ, particularly lung infections via breath analysis. While there are many studies reporting various bacterial volatile biomarkers or fingerprints using in vitro experiments, it has proven difficult to translate these data to in vivo breath analyses. Therefore, we aimed to create secondary electrospray ionization-mass spectrometry (SESI-MS) pathogen fingerprints directly from the breath of mice with lung infections. In this study we demonstrated that SESI-MS is capable of differentiating infected versus uninfected mice, P. aeruginosa-infected versus S. aureus-infected mice, as well as distinguish between infections caused by P. aeruginosa strains PAO1 versus FRD1, with statistical significance (p < 0.05). In addition, we compared in vitro and in vivo volatiles and observed that only 25-34% of peaks are shared between the in vitro and in vivo SESI-MS fingerprints. To the best of our knowledge, these are the first breath volatiles measured for P. aeruginosa PAO1, FRD1, and S. aureus RN450, and the first comparison of in vivo and in vitro volatile profiles from the same strains using the murine infection model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114336PMC
http://dx.doi.org/10.1088/1752-7155/7/1/016003DOI Listing

Publication Analysis

Top Keywords

lung infections
12
vitro vivo
8
infections
5
vivo
5
detecting bacterial
4
bacterial lung
4
infections vivo
4
vivo evaluation
4
vitro
4
evaluation vitro
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!