The use of individual participant data (IPD) from multiple studies is an increasingly popular approach when developing a multivariable risk prediction model. Corresponding datasets, however, typically differ in important aspects, such as baseline risk. This has driven the adoption of meta-analytical approaches for appropriately dealing with heterogeneity between study populations. Although these approaches provide an averaged prediction model across all studies, little guidance exists about how to apply or validate this model to new individuals or study populations outside the derivation data. We consider several approaches to develop a multivariable logistic regression model from an IPD meta-analysis (IPD-MA) with potential between-study heterogeneity. We also propose strategies for choosing a valid model intercept for when the model is to be validated or applied to new individuals or study populations. These strategies can be implemented by the IPD-MA developers or future model validators. Finally, we show how model generalizability can be evaluated when external validation data are lacking using internal-external cross-validation and extend our framework to count and time-to-event data. In an empirical evaluation, our results show how stratified estimation allows study-specific model intercepts, which can then inform the intercept to be used when applying the model in practice, even to a population not represented by included studies. In summary, our framework allows the development (through stratified estimation), implementation in new individuals (through focused intercept choice), and evaluation (through internal-external validation) of a single, integrated prediction model from an IPD-MA in order to achieve improved model performance and generalizability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/sim.5732 | DOI Listing |
Sci Rep
December 2024
College of Economics and Management, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
In light of the Chinese government's dual carbon goals, achieving cleaner production activities has become a central focus, with regional environmental collaborative governance, including the management of agricultural carbon reduction, emerging as a mainstream approach. This study examines 268 prefecture-level cities in China, measuring the carbon emission efficiency of city agriculture from 2001 to 2022. By integrating social network analysis and a modified gravity model, the study reveals the characteristics of the spatial association network of city agricultural carbon emission efficiency in China.
View Article and Find Full Text PDFSci Rep
December 2024
School of Physical Education, Southwest Petroleum University, Chengdu, 610500, China.
Stroke is one of the leading causes of death in developing countries, and China bears the largest global burden of stroke. This study aims to investigate the relationship between different dimensions of physical activity levels and stroke risk using a nationally representative database. We performed a cross-sectional analysis using data from the China Health and Retirement Longitudinal Study (CHARLS) 2020.
View Article and Find Full Text PDFSci Rep
December 2024
KAUST Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.
View Article and Find Full Text PDFSci Rep
December 2024
School of Mechanical Engineering, Liaoning Engineering Vocational College, Tieling, 112008, Liaoning, People's Republic of China.
The paper proposes a multi-rigid-body system state identification method based on self-healing model in order to improve the accuracy and reliability of CNC machine tools. Firstly, considering the influence of the joint surface, the Lagrange method is used to establish the mechanical model of the multi-rigid-body system. We input acceleration information and use the second-order modulation function to complete the online real-time identification of the joint surface parameters, thereby establishing the self-healing mechanical model of the multi-rigid-body system.
View Article and Find Full Text PDFSci Rep
December 2024
Merchant Marine College, Shanghai Maritime University, Shanghai, 201306, China.
The intelligent identification of wear particles in ferrography is a critical bottleneck that hampers the development and widespread adoption of ferrography technology. To address challenges such as false detection, missed detection of small wear particles, difficulty in distinguishing overlapping and similar abrasions, and handling complex image backgrounds, this paper proposes an algorithm called TCBGY-Net for detecting wear particles in ferrography images. The proposed TCBGY-Net uses YOLOv5s as the backbone network, which is enhanced with several advanced modules to improve detection performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!