AI Article Synopsis

  • The use of individual participant data (IPD) in developing risk prediction models often faces challenges due to differences in baseline risk across studies, necessitating meta-analytical approaches to address these variances.
  • Strategies for developing and validating multivariable logistic regression models from IPD meta-analyses are outlined, including the selection of appropriate model intercepts for new populations.
  • The proposed framework enhances model performance and generalizability by utilizing stratified estimation, focused intercept choices, and internal-external cross-validation, even when external validation data is scarce.

Article Abstract

The use of individual participant data (IPD) from multiple studies is an increasingly popular approach when developing a multivariable risk prediction model. Corresponding datasets, however, typically differ in important aspects, such as baseline risk. This has driven the adoption of meta-analytical approaches for appropriately dealing with heterogeneity between study populations. Although these approaches provide an averaged prediction model across all studies, little guidance exists about how to apply or validate this model to new individuals or study populations outside the derivation data. We consider several approaches to develop a multivariable logistic regression model from an IPD meta-analysis (IPD-MA) with potential between-study heterogeneity. We also propose strategies for choosing a valid model intercept for when the model is to be validated or applied to new individuals or study populations. These strategies can be implemented by the IPD-MA developers or future model validators. Finally, we show how model generalizability can be evaluated when external validation data are lacking using internal-external cross-validation and extend our framework to count and time-to-event data. In an empirical evaluation, our results show how stratified estimation allows study-specific model intercepts, which can then inform the intercept to be used when applying the model in practice, even to a population not represented by included studies. In summary, our framework allows the development (through stratified estimation), implementation in new individuals (through focused intercept choice), and evaluation (through internal-external validation) of a single, integrated prediction model from an IPD-MA in order to achieve improved model performance and generalizability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.5732DOI Listing

Publication Analysis

Top Keywords

model
12
prediction model
12
study populations
12
individual participant
8
participant data
8
individuals study
8
stratified estimation
8
data
5
framework developing
4
developing implementing
4

Similar Publications

In light of the Chinese government's dual carbon goals, achieving cleaner production activities has become a central focus, with regional environmental collaborative governance, including the management of agricultural carbon reduction, emerging as a mainstream approach. This study examines 268 prefecture-level cities in China, measuring the carbon emission efficiency of city agriculture from 2001 to 2022. By integrating social network analysis and a modified gravity model, the study reveals the characteristics of the spatial association network of city agricultural carbon emission efficiency in China.

View Article and Find Full Text PDF

Stroke is one of the leading causes of death in developing countries, and China bears the largest global burden of stroke. This study aims to investigate the relationship between different dimensions of physical activity levels and stroke risk using a nationally representative database. We performed a cross-sectional analysis using data from the China Health and Retirement Longitudinal Study (CHARLS) 2020.

View Article and Find Full Text PDF

Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.

View Article and Find Full Text PDF

Online vibration state identification of multi-rigid-body system based on self-healing model.

Sci Rep

December 2024

School of Mechanical Engineering, Liaoning Engineering Vocational College, Tieling, 112008, Liaoning, People's Republic of China.

The paper proposes a multi-rigid-body system state identification method based on self-healing model in order to improve the accuracy and reliability of CNC machine tools. Firstly, considering the influence of the joint surface, the Lagrange method is used to establish the mechanical model of the multi-rigid-body system. We input acceleration information and use the second-order modulation function to complete the online real-time identification of the joint surface parameters, thereby establishing the self-healing mechanical model of the multi-rigid-body system.

View Article and Find Full Text PDF

The intelligent identification of wear particles in ferrography is a critical bottleneck that hampers the development and widespread adoption of ferrography technology. To address challenges such as false detection, missed detection of small wear particles, difficulty in distinguishing overlapping and similar abrasions, and handling complex image backgrounds, this paper proposes an algorithm called TCBGY-Net for detecting wear particles in ferrography images. The proposed TCBGY-Net uses YOLOv5s as the backbone network, which is enhanced with several advanced modules to improve detection performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!