Using functional neuroimaging techniques two aspects of functional integration in the human brain have been investigated, functional connectivity and effective connectivity. In this study we examined both connectivity types in parallel within an executive attention network during rest and while performing an attention task. We analyzed the predictive value of resting-state functional connectivity on task-induced effective connectivity in patients with prodromal Alzheimer's disease (AD) and healthy elderly. We found that in healthy elderly, functional connectivity was a significant predictor for effective connectivity, however, it was frequency-specific. Effective top-down connectivity emerging from prefrontal areas was related with higher frequencies of functional connectivity (e.g., 0.08-0.15 Hz), in contrast to effective bottom-up connectivity going to prefrontal areas, which was related to lower frequencies of functional connectivity (e.g., 0.001-0.03 Hz). In patients, the prediction of effective connectivity by functional connectivity was disturbed. We conclude that functional connectivity and effective connectivity are interrelated in healthy brains but this relationship is aberrant in very early AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6869061PMC
http://dx.doi.org/10.1002/hbm.22226DOI Listing

Publication Analysis

Top Keywords

functional connectivity
28
effective connectivity
24
connectivity
16
healthy elderly
12
functional
9
patients prodromal
8
prodromal alzheimer's
8
alzheimer's disease
8
connectivity effective
8
prefrontal areas
8

Similar Publications

Background: Cognitive integration occurs when trainees make conceptual connections between relevant knowledges and is known to improve learning. While several experimental studies have demonstrated how text and audio-visual instruction can be designed to enhance cognitive integration, clinical skills training in real-world contexts may require alternative educational strategies. Introducing three-dimensional (3D) printed models during clinical skills instruction may offer unique learning opportunities to support cognitive integration.

View Article and Find Full Text PDF

The current study provides the first ultrastructural observations on the intraerythrocytic stages of so-called Haemogregarina damiettae and their cytopathological effects on the infected erythrocytes (IEs) in addition to the recording of new morphometric data. The intraerythrocytic stages are attributed to the immature forms or trophozoites (Ts), and mature gamonts (Gs). Ts are typically bowling-bottle shaped with nucleus (TN) occupying its globose part, while Gs are typically banana- shaped.

View Article and Find Full Text PDF

Introduction: In recent years, there has been a rise in the incidence of renal cell carcinoma (RCC), with metastatic RCC being a prevalent and significant contributor to mortality. While a regulatory role for microRNAs (miRNAs) in the development and progression of RCC has been recognized, their precise functions, molecular mechanisms, and potential clinical implications remain inadequately elucidated. Hence, this study aimed to explore the role of miR-507 in RCC and identify STEAP3 as a downstream target of miR-507.

View Article and Find Full Text PDF

Research on brain aging using resting-state functional magnetic resonance imaging (rs-fMRI) has typically focused on comparing "older" adults to younger adults. Importantly, these studies have often neglected the middle age group, which is also significantly impacted by brain aging, including by early changes in motor, memory, and cognitive functions. This study aims to address this limitation by examining the resting state networks in middle-aged adults via an exploratory whole-brain ROI-to-ROI analysis.

View Article and Find Full Text PDF

Excitation-inhibition (E/I) imbalance is theorized as a key mechanism in the pathophysiology of epilepsy, with ample research focusing on elucidating its cellular manifestations. However, few studies investigate E/I imbalance at the macroscale, whole-brain level, and its microcircuit-level mechanisms and clinical significance remain incompletely understood. Here, the Hurst exponent, an index of the E/I ratio, is computed from resting-state fMRI time series, and microcircuit parameters are simulated using biophysical models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!