Coumarin-sensitized, long-wavelength-absorbing luminescent Eu(III)-complexes have been synthesized and characterized. The lanthanide binding site consists of a cyclen-based chelating framework that is attached through a short linker to a 7-hydroxycoumarin, a 7-B(OH)(2)-coumarin, a 7-O-(4-pinacolatoboronbenzyl)-coumarin or a 7-O-(4-methoxybenzyl)-coumarin. The syntheses are straightforward, use readily available building blocks, and proceed through a small number of high-yielding steps. The sensitivity of coumarin photophysics to the 7-substituent enables modulation of the antenna-absorption properties, and thus the lanthanide excitation spectrum. Reactions of the boronate-based functionalities (cages) with H(2)O(2) yielded the corresponding 7-hydroxycoumarin species. The same species was produced with peroxynitrite in a ×10(6)-10(7)-fold faster reaction. Both reactions resulted in the emergence of a strong ≈407 nm excitation band, with concomitant decrease of the 366 nm band of the caged probe. In aqueous solution the methoxybenzyl caged Eu-complex was quenched by ONOO(-). We have shown that preliminary screening of simple coumarin-based antennae through UV/Vis absorption spectroscopy is possible as the changes in absorption profile translate with good fidelity to changes in Eu(III)-excitation profile in the fully elaborated complex. Taken together, our results show that the 7-hydroxycoumarin antenna is a viable scaffold for the construction of turn-on and ratiometric luminescent probes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201203957 | DOI Listing |
Bioorg Med Chem
June 2019
Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France. Electronic address:
The use of Photodynamic Therapy (PDT) for the treatment of several kinds of cancer as well as bacterial, fungal or viral infections has received increasing attention during the last decade. However, the currently clinically approved photosensitizers (PSs) have several drawbacks, including photobleaching, slow clearance from the organism and poor water solubility. To overcome these shortcomings, many efforts have been made in the development of new types of PSs, such as Ru(II) polypyridyl complexes.
View Article and Find Full Text PDFJ Am Chem Soc
September 2013
State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China.
The phycobilisomes of cyanobacteria and red-algae are highly efficient peripheral light-harvesting complexes that capture and transfer light energy in a cascade of excitation energy transfer steps through multiple phycobilin chromophores to the chlorophylls of core photosystems. In this work, we focus on the last step of this process by constructing simple functional analogs of natural phycobilisome-photosystem complexes that are based on bichromophoric protein complexes comprising a phycobilin- and a chlorophyll- or porphyrin-binding domain. The former is based on ApcE(1-240), the N-terminal chromophore-binding domain of the phycobilisome's L(CM) core-membrane linker, and the latter on HP7, a de novo designed four-helix bundle protein that was originally planned as a high-affinity heme-binding protein, analogous to b-type cytochromes.
View Article and Find Full Text PDFChemistry
February 2013
Department of Chemistry, BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden.
Coumarin-sensitized, long-wavelength-absorbing luminescent Eu(III)-complexes have been synthesized and characterized. The lanthanide binding site consists of a cyclen-based chelating framework that is attached through a short linker to a 7-hydroxycoumarin, a 7-B(OH)(2)-coumarin, a 7-O-(4-pinacolatoboronbenzyl)-coumarin or a 7-O-(4-methoxybenzyl)-coumarin. The syntheses are straightforward, use readily available building blocks, and proceed through a small number of high-yielding steps.
View Article and Find Full Text PDFJ Org Chem
March 2010
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
Chlorins bearing a six-membered imide ring spanning positions 13-15, commonly referred to as purpurinimides, exhibit long-wavelength absorption yet have heretofore only been available via semisynthesis from naturally occurring chlorophylls. A concise route to synthetic chlorins, which bear a geminal dimethyl group in the pyrroline ring, has been extended to provide access to chlorin-13,15-dicarboximides. The new route entails (i) synthesis of a 13-bromochlorin, (ii) palladium-catalyzed carbamoylation at the 13-position, (iii) regioselective 15-bromination under acidic conditions, and (iv) one-flask palladium-mediated carbonylation and ring closure to form the imide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!