Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Because of the increasing importance of N-heterocyclic carbenes in organometallic chemistry we investigated the ligand properties of structurally-related acyclic and cyclic heavier carbene analogues with transition metal chlorides. Acyclic {(Me(3)Si)(2)N}(2)El, El = Ge and Sn, react with CuCl with transfer of one (Me(3)Si)(2)N ligand to yield the known copper tetramer {(Me(3)Si)(2)NCu}(4). The cyclic Me(2)Si(μ-N(t)Bu)(2)Ge, by contrast, binds copper through germanium only, furnishing a tetranuclear ladder structure with both terminal and bridging germylenes. The tin homologue, however, inserts into the CuCl bond, and the ensuing {Me(2)Si(μ-N(t)Bu)(2)SnCl}(-) ions then coordinate one copper ion via their tin atoms while sandwiching the remaining three copper ions in an unprecedented κ(2)-N,N' fashion. Chemically-harder Cr(II)--created in a redox reaction of Me(2)Si(μ-N(t)Bu)(2)Sn with CrCl(3)(THF)(3)--is not coordinated by tin, but chelated by both nitrogen atoms of one {Me(2)Si(μ-N(t)Bu)(2)SnCl}(-) ion and more weakly through the tin-bound chloride.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2dt32443a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!