Historically, time measurements have been based on oscillation frequencies in systems of particles, from the motion of celestial bodies to atomic transitions. Relativity and quantum mechanics show that even a single particle of mass m determines a Compton frequency ω(0) = mc(2)/[formula: see text] where c is the speed of light and [formula: see text] is Planck's constant h divided by 2π. A clock referenced to ω(0) would enable high-precision mass measurements and a fundamental definition of the second. We demonstrate such a clock using an optical frequency comb to self-reference a Ramsey-Bordé atom interferometer and synchronize an oscillator at a subharmonic of ω(0.) This directly demonstrates the connection between time and mass. It allows measurement of microscopic masses with 4 × 10(-9) accuracy in the proposed revision to SI units. Together with the Avogadro project, it yields calibrated kilograms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1230767 | DOI Listing |
Photochem Photobiol
December 2024
Graduate School of Informatics, Nagoya University, Nagoya, Japan.
Circadian clocks facilitate organisms' adaptation to the day-night environmental cycle. Some of the component genes of the clocks ("clock genes") respond directly to changes in ambient light, supposedly allowing the clocks to synchronize to and/or oscillate robustly in the environmental cycle. In the dicotyledonous model plant Arabidopsis thaliana, the clock genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY) and PSEUDO-RESPONSE REGULATOR 9 (PRR9) show transient expression in response to the morning light.
View Article and Find Full Text PDFBMC Biol
December 2024
Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
Background: Epidemiologic researches show that short sleep duration may affect feeding behaviors resulting in higher energy intake and increased risk of obesity, but the further mechanisms that can interpret the causality remain unclear. The circadian rhythm is fine-tuned by the suprachiasmatic nucleus (SCN) as the master clock, which is essential for driving rhythms in food intake and energy metabolism through neuronal projections to the arcuate nucleus (ARC) and paraventricular nucleus (PVN).
Results: We showed that chronic SD-induced aberrant expressions of AgRP/NPY and POMC attributed to compromised JAK/STAT3 signals and reduced energy expenditure in the mice, which can be rescued with AAV-genetic overexpression of BMAL1 into SCN.
Commun Biol
December 2024
Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China.
MicroRNAs post-transcriptionally regulate gene expression and contribute to numerous life processes, including circadian rhythms. However, whether miRNAs contribute to zebrafish circadian regulation has not yet been investigated. Here, we showed that mature miR-219-5p, and its three pre-miRNAs, mir-219-1, mir-219-2, and mir-219-3, are rhythmically expressed primarily in Tectum opticum (TeO), Corpus cerebelli (CCe), and Crista cerellaris (CC) of the zebrafish brain.
View Article and Find Full Text PDFNature
December 2024
Department of Physics and Astronomy, University of California, Los Angeles, CA, USA.
After nearly 50 years of searching, the vacuum ultraviolet Th nuclear isomeric transition has recently been directly laser excited and measured with high spectroscopic precision. Nuclear clocks based on this transition are expected to be more robust than and may outperform current optical atomic clocks. These clocks also promise sensitive tests for new physics beyond the standard model.
View Article and Find Full Text PDFBiochem Pharmacol
December 2024
Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China. Electronic address:
Sleep deprivation (SD) causes circadian misalignment, and circadian clock disruption is associated with metabolic diseases such as obesity, insulin resistance, and diabetes. However, the underlying mechanism for SD-induced circadian clock disruption as well as metabolic enzyme changes is still lacking. Here, we developed SD sensitizes mice with disrupted circadian rhythms to demonstrate the regulation role and mechanism of SD in UDP-glucuronosyltransferases (UGTs) expression and the metabolism of corresponding substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!