Measurements of the magnetic susceptibility, magnetization, electrical resistivity and neutron diffraction have been performed for the compound Fe(0.5)TiS(2) in which Fe atoms are intercalated between S-Ti-S tri-layers. It has been shown that this compound with a monoclinic crystal structure exhibits an antiferromagnetic (AF) ground state below the Néel temperature T(N) ≈ 140 K. Small deviations from the stoichiometry and some disordering effects caused by the additional low-temperature heat treatment do not affect substantially the AF state in Fe(0.5)TiS(2). According to neutron diffraction data the magnetic structure at 2 K is described by the propagation vector k = (1/4,0,1/4). The Fe magnetic moments with a value of (2.9 ± 0.1) μ(B) are directed at an angle of (78.5 ± 1.8)° to the layers. Application of the magnetic field at T < T(N) induces a metamagnetic phase transition to the ferromagnetic (F) state, which is accompanied by the large magnetoresistance effect (|Δρ/ρ| up to 27%). Below 100 K, the field-induced AF-F transition is found to be irreversible, as evidenced by magnetoresistance and neutron diffraction measurements. The magnetization reversal in the metastable F state is accompanied at low temperatures by substantial hysteresis (ΔH ~ 100 kOe) which is associated with the Ising character of Fe ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/25/6/066004 | DOI Listing |
Materials (Basel)
January 2025
Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France.
Intense sources of very cold neutrons (VCNs) would be beneficial for various neutron scattering techniques and low-energy particle physics experiments. Binary clathrate hydrates hosting deuterated tetrahydrofuran (THF-d) and dioxygen show promise as potential moderators for such sources due to a rich spectrum of localized low-energy excitations of the encaged guest molecules. In this article, we present a reliable manufacturing technique for such hydrates.
View Article and Find Full Text PDFSci Rep
January 2025
Research Institute of Interdisciplinary Science, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China.
Manufacturing of metallic components using additive manufacturing technique is of great interest for the industrial applications. Here, the mechanical and microstructural responses of a 316 L stainless steel (316LSS) built by selective laser melting (SLM) with XOY and XOZ directions were revealed by performing in situ neutron diffraction tensile tests. The tensile strength of the XOY-printed samples reaches 700 MPa, while the tensile strength of the XOZ-printed samples is less than 600 MPa.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
CuO octahedra usually show elongated distortion, leading to active orbitals and planar exchange interactions, while compressed CuO octahedra with active orbitals and unidirectional exchange interactions are exceptionally rare. Here, we design and synthesize a new frustrated antiferromagnet CaCuFeO through a high-pressure and high-temperature approach, in which robust compressed CuO octahedra are realized, separating the FeO sheets that comprise zigzag spin ladders. Magnetic susceptibility and specific heat measurements exhibit a long-range antiferromagnetic order below the Néel temperature of 165 K, which is further confirmed by neutron diffraction.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Earth Science, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
The compression behavior of iron oxyhydroxide ε-FeOOH is complex, with variations in its magnetic property and bonding character. In this study, in situ powder neutron diffraction experiments were conducted on ε-FeOOH and ε-FeOOD up to pressures exceeding 20 GPa to investigate a spin-reorientation (spin-flop) transition, hydrogen-bond (H-bond) symmetrization, and their correlation. The magnetic transition was observed at 8 GPa in both ε-FeOOH and ε-FeOOD.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2025
Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 18200 Praha 8, Czechia.
The magnetic structures of the Ho-based i-MAX phase (MoHo)GaC were studied with neutron powder diffraction at low temperature. (MoHo)GaC crystallizes in the orthorhombic space group Cmcm. The material undergoes two successive antiferromagnetic transitions at T = 10 K and T = 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!