Intracellular calcium signaling pathways play a major role in cellular responses such as proliferation, differentiation and apoptosis. Human embryonic stem cells (hESC) provide new possibilities to explore the development and differentiation of various cell types of the human body. Intracellular calcium responses to various ligands and the calcium signaling pathways, however, have not been thoroughly studied in embryonic stem cells and in their differentiated progenies. In our previous work we demonstrated that the use of the fluorescent calcium indicator Fluo-4 with confocal microscopy allows sensitive and reliable measurements of calcium modulation in human embryonic stem cells and stem-cell derived cardiomyocytes. Here we developed a human embryonic stem cell line stably expressing a genetically encoded Ca(2+) indicator (GCaMP2) using a transposon-based gene delivery system. We found that the differentiation properties were fully preserved in the GCaMP2-expressing hESC lines and Ca imaging could be performed without the need of toxic dye-loading of the cells. In undifferentiated hES cells the calcium signals induced by various ligands, ATP, LPA, trypsin or angiotensin II were comparable to those in Fluo-4 loaded cells. In accordance with previous findings, no calcium signal was evoked by thrombin, histamine or GABA. Cardiomyocyte colonies differentiated from hES-GCaMP2 cells could be recognized by spontaneous contractions and Ca(2+) oscillations. GCaMP2-expressing neural cells were identified based on their morphological and immuno-staining properties and Ca signals were characterized on those cells. Characteristics of both the spontaneous and ligand-induced Ca(2+) signals, as well as their pharmacological modification could be successfully examined in these model cells by fluorescence imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2012.12.024 | DOI Listing |
Int J Mol Sci
January 2025
Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain.
The World Health Organization estimates that approximately 285 million people suffer from visual impairments, around 5% of which are caused by corneal pathologies. Currently, the most common clinical treatment consists of a corneal transplant (keratoplasty) from a human donor. However, worldwide demand for donor corneas amply exceeds the available supply.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo 05403-900, Brazil.
Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into various lineages. They have also the potential to protect themselves against harmful stimuli to maintain their functional integrity. Drug resistance-related transporters such as ABCB1 (P-glycoprotein; P-gp), ABCC1 (MRP1; multidrug resistance-related Protein 1), and LRP (lung resistance protein) may protect MSCs against toxic substances such as chemotherapeutic agents.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Biology, University of Padua, 35131 Padua, Italy.
Neural progenitor cells (NPCs) are often used to study the subcellular mechanisms underlying differentiation into neurons in vitro. Works published to date have focused on the pathways that distinguish undifferentiated NPCs from mature neurons, neglecting the earlier and intermediate stages of this process. Current evidence suggests that mitochondria interaction with the ER is fundamental to a wide range of intracellular processes.
View Article and Find Full Text PDFBiomedicines
December 2024
School of Health Sciences, IMU University, Kuala Lumpur 57000, Malaysia.
Background/objectives: (ALS), or Lou Gehrig's disease, is a debilitating, incurable neurodegenerative disorder characterised by motor neuron death in the spinal cord, brainstem, and motor cortex. With an incidence rate of about 4.42 cases per 100,000 people annually, ALS severely impacts motor function and quality of life, causing progressive muscle atrophy, spasticity, paralysis, and eventually death.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
January 2025
Donnelly Centre for Cellular and Biomolecular Research and Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
In multicellular organisms, Wnt proteins govern stem and progenitor cell renewal and differentiation to regulate embryonic development, adult tissue homeostasis and tissue regeneration. Defects in canonical Wnt signalling, which is transduced intracellularly by β-catenin, have been associated with developmental disorders, degenerative diseases and cancers. Although a simple model describing Wnt-β-catenin signalling is widely used to introduce this pathway and has largely remained unchanged over the past 30 years, in this Review we discuss recent studies that have provided important new insights into the mechanisms of Wnt production, receptor activation and intracellular signalling that advance our understanding of the molecular mechanisms that underlie this important cell-cell communication system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!