Magnetic nanoparticles (MNPs) covalently coated by PEO-PPO-PEO block copolymer for drug delivery.

J Colloid Interface Sci

Laboratory of Separation Science and Engineering, State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Beijing 100190, China.

Published: April 2013

A stable drug carrier has been prepared by covalently coating magnetic nanoparticles (MNPs) with PEO-PPO-PEO block copolymer Pluronic P85. The particles were characterized by TEM, XRD, DLS, VSM, FTIR, and TGA. A typical product has a 15 nm magnetite core and a 100 nm hydrodynamic diameter with a narrow size distribution and is superparamagnetic with large saturation magnetization (57.102 emu/g) at room temperature. The covalently-coated Pluronic-MNPs (MagPluronics) were proven to be stable in different conditions, such as aqueous solution, 0.2 M PBS solution, and pH 13.5 solution, which would be significant for biological applications. Furthermore, MagPluronics also possess temperature-responsive property acquired from the Pluronic copolymer layer on their surface, which can cause conformational change of Pluronics and improve load and delivery efficiency of the particles. The temperature-controlled loading and releasing of hydrophobic model drug curcumin were tested with these particles. A loading efficiency of 81.3% and a sustained release of more than 4 days were achieved in simulated human body condition. It indicates that the covalently-coated MagPluronics are stable carriers with good drug-loading capacity and controlled-release property.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2012.11.062DOI Listing

Publication Analysis

Top Keywords

magnetic nanoparticles
8
nanoparticles mnps
8
peo-ppo-peo block
8
block copolymer
8
mnps covalently
4
covalently coated
4
coated peo-ppo-peo
4
copolymer drug
4
drug delivery
4
delivery stable
4

Similar Publications

Ultrathin 2D Cu-Porphyrin MOF Nanosheet Loaded FeO Nanoparticles As a Multifunctional Nanoplatform for Synergetic Chemodynamic and Photodynamic Therapy Independent of O.

ACS Appl Mater Interfaces

January 2025

College of Chemistry and Materials Science, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.

In this study, we developed a multifunctional nanoplatform to address the limitations of strictly acidic pH for the Fenton reaction involving FeO and the low efficiency of mono treatments. The hybrid material, FeO@Cu-TCPP, was assembled through hydrophobic interactions of polyvinylpyrrolidone (PVP) coated on its surface. The efficiency of the Fenton reaction using FeO was significantly enhanced by the photo-Fenton process in the presence of Cu-TCPP.

View Article and Find Full Text PDF

Composite photocatalysts based on metal nanoparticles and functional polymers attract much attention compared to inorganic photocatalysts. In this study, a reusable magnetite/anion exchanger (FeO/PPE-2) functional material is synthesized by a hydrothermal method, and its photocatalytic activity is evaluated for the photocatalytic degradation of Rhodamine B (RhB). The results from materials characterization confirm a well-defined morphology of magnetic FeO/PPE-2 functional material and the formation of FeO nanocrystals with different shapes and sizes on the surface of anion exchange material (PPE-2).

View Article and Find Full Text PDF

Biomagnetic fluid dynamics (BFD) is an emerging and promising field within fluid mechanics, focusing on the dynamics of bio-fluids like blood in the presence of magnetic fields. This research is crucial in the medical arena for applications such as medication delivery, diagnostic and therapeutic procedures, prevention of excessive bleeding, and treatment of malignant tumors using magnetic particles. This study delves into the intricacies of blood flow induced by cilia, carrying trihybrid nanoparticles (gold, copper, and titania), within a catheterized arterial annulus under a robust magnetic field.

View Article and Find Full Text PDF

Nanoscale Fe(0)-zeolite composite derived from coal bottom ash for efficient treatment of Cr(VI)-contaminated groundwater: Unveiling the importance of locations for surface-bound Fe(II) and Fe(0) passivation products.

J Hazard Mater

January 2025

Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Environmental Engineering, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. Electronic address:

The synthesis of coal bottom ash-induced zeolite (Si-Al material) has been widely reported; however, the selective recovery of the three main elements, viz., Si, Al, and Fe, from coal bottom ash for the synthesis of reactive adsorbents has not yet been reported. In this study, we separated the magnetic and non-magnetic fractions of coal bottom ash to selectively recover Fe and Si-Al for synthesizing nanoscale zero-valent iron@zeolite (NZVI@ZBA) composites with uniform formation of Fe(0) nanoparticles on the ZBA surface.

View Article and Find Full Text PDF

Intra-Mesopore Immunoassay Based on Core-Shell Structured Magnetic Hierarchically Porous ZIFs.

ACS Sens

January 2025

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

It is crucial yet challenging to sensitively quantify low-abundance biomarkers in blood for early screening and diagnosis of various diseases. Herein, an analytical model of intra-mesopore immunoassay (IMIA) was proposed, which was competent to examine various biomarkers at the femtomolar level. The success is rooted in the design of an innovative superparamagnetic core-shell structure with FeO nanoparticles (NPs) at the core and hierarchically porous zeolitic imidazolate frameworks as a shell (FeO@HPZIF-8), achieved through a soft-template directed self-assembly coupled with confinement growth mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!