AI Article Synopsis

Article Abstract

Transcription factor NF-E2-related factor 2 (NRF2) plays a crucial role in the cellular defense against oxidative/electrophilic stress by up-regulating multiple antioxidant genes. Numerous studies with genetically modified animals have demonstrated that Nrf2 is a sensitivity determining factor upon the exposure to environmental chemicals including carcinogens. Moreover, recent studies have demonstrated that polymorphism in the human NRF2 promoter is associated with higher risks for developing acute lung injury, gastric mucosal inflammation, and nephritis. Therefore, the identification of reliable and effective human target genes of NRF2 may allow the monitoring of NRF2 activity and to predict individual sensitivity to environmental stress-induced damage. For this purpose, we investigated genes that are tightly controlled by NRF2 to establish markers for NRF2 activity in human cells. Firstly, in the normal human renal epithelial HK-2 cells, the measurement of the expression of 30 previously reported NRF2 target genes in response to NRF2 inducers (sulforaphane, tert-butylhydroquinone, cinnamic aldehyde, and hydrogen peroxide) showed that the aldo-keto reductase (AKR) 1C1 is highly inducible by all treatments. Accordantly, the basal and inducible expressions of AKRs were significantly attenuated in NRF2-silenced HK-2 cells. Whereas, cells with stable KEAP1 knockdown, which causes a modest NRF2 activation, demonstrated substantially increased levels of AKR1A1, 1B1, 1B10, 1C1, 1C2, and 1C3. Secondly, the linkage between NRF2 and the AKRs was confirmed in human monocytic leukemia cell line U937, which can be a model of peripherally available blood cells. The treatment of U937 cells with NRF2 inducers including sulforaphane effectively elevated the expression of AKR1B1, 1B10, 1C1, 1C2, and 1C3. Whereas, the levels of both the basal and sulforaphane-inducible expression of AKR1C1 were significantly reduced in NRF2-silenced stable U937 cells compared to the control cells. Similarly, the inducible expression of AKR1C1 was observed in another human monocytic leukemia cell line THP-1 as well as in human primary blood CD14(+) monocytes. In conclusion, together with the high inducibility and NRF2 dependency shown in renal epithelial cells as well as in peripherally available blood cells, current findings suggest that AKRs can be utilized as a marker of NRF2 activity in human cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2012.12.026DOI Listing

Publication Analysis

Top Keywords

nrf2
14
cells
12
human cells
12
nrf2 activity
12
human
9
target genes
8
activity human
8
renal epithelial
8
hk-2 cells
8
nrf2 inducers
8

Similar Publications

To examine the effect of DBS of the lateral hypothalamic area (LHA) on age-related memory changes, neuronal firing from CA1, oxidative stress, and the expression of Hsp70, BDNF, and synaptophysin. 72 male rats were randomly allocated into 6 equal groups: a) normal young group (8 W), b) sham young group, c) DBS young group, d) normal old group (24 months), e) sham old group and f) DBS old group. Memory tests (passive avoidance and Y maze), oxidative stress markers (MDA, catalase, and GSH) and expression of Nrf2, HO-1, Hsp70, BDNF, and synaptophysin were measured by the end of the experiment.

View Article and Find Full Text PDF

Using Transcriptomic Signatures to Elucidate Individual and Mixture Effects of Inorganic Arsenic and Manganese in Human Placental Trophoblast HTR-8/SVneo Cells.

Toxicol Sci

January 2025

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.

Prenatal exposure to the toxic metal inorganic arsenic (iAs) is associated with adverse pregnancy and fetal growth outcomes. These adverse outcomes are tied to physiological disruptions in the placenta. While iAs co-occurs in the environment with other metals such as manganese (Mn), there is a gap in the knowledge of the effects of metal-mixtures on the placenta.

View Article and Find Full Text PDF

Whether early life acetaminophen (APAP) exposures injure the developing lung is controversial. We sought to correlate murine pulmonary developmental expression profiles of to susceptibility to APAP exposure. P14 C57BL/6 mice were exposed to APAP (140 mg/kg x 1, IP) and assessed for evidence of a histologic, metabolic, functional, and/or transcriptional pulmonary response.

View Article and Find Full Text PDF

The potential of underutilized plant species to improve food security, health, eco-nomic output, and the environment has not been fully realized. Sri Lanka an island on the Indian Ocean is home to numerous plant species with significant medicinal potential, in-cluding many underutilized plants that could help meet the growing demand for food, en-ergy, medicines, and industrial resources. Globally, there are over a thousand known and unknown phytochemicals derived from plants.

View Article and Find Full Text PDF

The traditional use of plants of the Cinnamomum genus dates back to traditional Eastern medicine for millennia and they have also been used in Western integrative medicine practices, especially for their anti-inflammatory activity. In the context of chemical diversity, the absolute majority of species in this genus have cinnamaldehyde as the majority component, which in turn holds the title of the active ingredient, whose biological effect profile has already been demonstrated in numerous experiments in acute and chronic inflammatory conditions. In this context, the objective of this research was to investigate how cinnamaldehyde can influence inflammatory phenomena.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!