A nonocclusive, inexpensive pediatric pulsatile roller pump for cardiopulmonary bypass, extracorporeal life support, and left/right ventricular assist systems.

Artif Organs

Department of Pediatrics, Department of Surgery and Bioengineering, Penn State Hershey Pediatric Cardiovascular Research Center, Penn State Hershey Children's Hospital, Hershey, PA 17033-0850, USA.

Published: January 2013

A simple, inexpensive pediatric pulsatile roller blood pump has been utilized for routine cardiopulmonary bypass (CPB) procedures, extracorporeal life support (ECLS), and left/right ventricular assist systems (LVAS/RVAS) for decades in France. This particular nonocclusive pulsatile system has many advantages including several safety features for patients as well as an extremely lower cost. The objective of this study is to evaluate the performance of this particular system for CPB, ECLS, and LVAS/RVAS in pulsatile mode. This pediatric nonocclusive system was evaluated with pump flow rates of 500, 750, and 1000 mL/min under normothermic (35°C) and hypothermic (25°C) conditions in CPB, ECLS, and LVAS/RVAS circuits using clinical disposables and settings. Energy equivalent pressure (EEP), surplus homodynamic energy (SHE), and total hemodynamic energy (THE) were calculated for each experimental stage. The pump generated near physiological quality of pulsatile flow without backflow in the three simulated pediatric circuits. With increased flow rates, more hemodynamic energy was delivered to the pseudo patient. This particular nonocclusive pediatric pulsatile system performed well during all of the experimental conditions and generated adequate quality pulsatile pressure-flow waveforms using CPB, ECLS, and LVAS/RVAS circuitry. Although this novel concept was first introduced in the 1990s, we believe that there is still need for this technology (with engineering modifications) because of significant advantages including safety and cost.

Download full-text PDF

Source
http://dx.doi.org/10.1111/aor.12026DOI Listing

Publication Analysis

Top Keywords

pediatric pulsatile
12
cpb ecls
12
ecls lvas/rvas
12
inexpensive pediatric
8
pulsatile roller
8
cardiopulmonary bypass
8
extracorporeal life
8
life support
8
left/right ventricular
8
ventricular assist
8

Similar Publications

This study aimed to analyze the relationship between cutaneous microcirculation reactivity, retinal circulation, macrocirculation function, and specific adhesion molecules in young patients with uncomplicated type 1 diabetes. Fifty-five patients with type 1 diabetes mellitus (T1DM), aged 8 to 18 years, were divided into subgroups based on skin microcirculation reactivity. The cutaneous microcirculatory vessels were considered reactive if post-test PORH coverage increased compared to pre-test coverage.

View Article and Find Full Text PDF
Article Synopsis
  • Spondylo-thoracic dysplasia (STD) is a rare congenital condition that affects the vertebrae and thoracic area, often leading to serious respiratory issues and a high risk of early death in neonates.
  • The text details the case of a one-day-old male newborn with severe respiratory distress and various physical anomalies, including scoliosis and rib deformities, identified through clinical examinations and imaging studies.
  • The baby was diagnosed with STD, received conservative management, and survived past the neonatal period, offering insights into this particular variant of the condition.
View Article and Find Full Text PDF

Vascular stabilization is a mechanosensitive process, in part driven by blood flow. Here, we demonstrate the involvement of the mechanosensitive ion channel, Piezo1, in promoting arterial accumulation of vascular smooth muscle cells (vSMCs) during zebrafish development. Using a series of small molecule antagonists or agonists to temporally regulate Piezo1 activity, we identified a role for the Piezo1 channel in regulating klf2a, a blood flow responsive transcription factor, expression levels and altered targeting of vSMCs between arteries and veins.

View Article and Find Full Text PDF

Randomized Trial of Pulsatile and Nonpulsatile Flow in Cyanotic and Acyanotic Congenital Heart Surgery.

World J Pediatr Congenit Heart Surg

December 2024

Penn State Hershey Pediatric Cardiovascular Research Center, Penn State College of Medicine, Hershey, PA, USA.

Background: The study objective was to determine the impact of cardiopulmonary bypass perfusion modalities on cerebral hemodynamics and clinical outcomes in congenital cardiac surgery patients stratified by acyanotic versus cyanotic heart disease.

Methods: A total of 159 pediatric (age <18 years) cardiac surgery patients were prospectively randomized to pulsatile or nonpulsatile cardiopulmonary bypass and stratified by type of congenital heart disease: acyanotic versus cyanotic. Intraoperative cerebral gaseous microemboli counts and middle cerebral artery pulsatility index were assessed.

View Article and Find Full Text PDF

Recapitulation of physiologic and pathophysiologic pulsatile CSF flow in purpose-built high-throughput hydrocephalus bioreactors.

Fluids Barriers CNS

December 2024

Department of Chemical Engineering and Materials Science, Wayne State University, 6135 Woodward Avenue, Rm 1413, Detroit, MI, 48202, USA.

Background: Hydrocephalus, an accumulation of cerebrospinal fluid (CSF) in the ventricles of the brain, is often treated via a shunt system to divert the excess CSF to a different compartment; if left untreated, it can lead to serious complications and permanent brain damage. It is estimated that one in every 500 people are born with hydrocephalus. Despite more than 60 years of concerted efforts, shunts still have the highest failure rate of any neurological device requiring follow-up shunt revision surgeries and contributing to the $2 billion cost of hydrocephalus care in the US alone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!