Women living on rural Kenyan dairy farms spend significant amounts of time collecting wood for cooking. Biogas digesters, which generate biogas for cooking from the anaerobic decomposition of livestock manure, are an alternative fuel source. The objective of this study was to quantify the quality of life and health benefits of installing biogas digesters on rural Kenyan dairy farms with respect to wood utilisation. Women from 62 farms (31 biogas farms and 31 referent farms) participated in interviews to determine reliance on wood and the impact of biogas digesters on this reliance. Self-reported back pain, time spent collecting wood and money spent on wood were significantly lower (p < 0.01) for the biogas group, compared to referent farms. Multivariable linear regression showed that wood consumption increased by 2 lbs/day for each additional family member living on a farm. For an average family of three people, the addition of one cow was associated with increased wood consumption by 1.0 lb/day on biogas farms but by 4.4 lbs/day on referent farms (significant interaction variable - likely due to additional hot water for cleaning milk collection equipment). Biogas digesters represent a potentially important technology that can reduce reliance on wood fuel and improve health for Kenyan dairy farmers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17441692.2012.758299 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka Str. 2, 44-100, Gliwice, Poland.
Various novel technologies are currently under development aimed at improving bio-methane output to tackle challenges related to process stability, biogas production, and methane quality in the anaerobic digestion (AD) process. The management of substrate type, temperature, pH, hydraulic retention time (HRT), organic loading rate (OLR), and inoculum origin is essential for ensuring process effectiveness, minimizing inhibition, and maximizing production of biogas and methane yield. The review emphasizes sustainability, focusing on the environmental and economic benefits of anaerobic digestion, including the reduction of greenhouse gas (GHG) emissions, the minimization of landfill waste, and the provision of renewable energy sources.
View Article and Find Full Text PDFJ Environ Manage
December 2024
ENGIE Lab Crigen, 93240, Stains, Paris, France. Electronic address:
Bioelectrochemically improved anaerobic digestion (AD-BES) represents an upgrading strategy for existing biogas plants, consisting of the integration of bioelectrodes within the AD reactor. For this study, a series of laboratory-scale AD-BES reactors were operated, valorising agricultural digestates through the production of biogas. The reactors were inoculated and started-up with three different digestates, leading to significant differences in the microbial community developed on the bioelectrodes.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
Biochemical methane potential tests using water hyacinth (WH), pretreated water hyacinth (PWH), and Hydrilla verticillata (HV) as substrates using sewage media were explored. This study replaced the freshwater required to prepare the slurry for AD of organic solid waste with domestic sewage. Cow dung was used as the inoculum.
View Article and Find Full Text PDFISME Commun
January 2024
Otto-von-Guericke University Magdeburg, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Saxony-Anhalt, Germany.
A comprehensive understanding of microbial community dynamics is fundamental to the advancement of environmental microbiology, human health, and biotechnology. Metaproteomics, defined as the analysis of all proteins present within a microbial community, provides insights into these complex systems. Microbial adaptation and activity depend to an important extent on newly synthesized proteins (nP), however, the distinction between nP and bulk proteins is challenging.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China. Electronic address:
Biodegradable plastics (BPs) and lignite, both rich in organic matter, present significant challenges for efficient conversion into clean energy. This study examined the anaerobic co-digestion of BPs and lignite under controlled laboratory conditions. The results demonstrated that the co-digestion of polylactic acid (PLA) and lignite (at a 1:2 mass ratio, with 5 g PLA and 10 g lignite as the model system) rapidly acclimated to the anaerobic environment, enhancing cumulative biogas production by 57 % compared to the mono-digestion of lignite alone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!