Spectrophotometric-dual-enzyme-simultaneous assay in one reaction solution: chemometrics and experimental models.

Anal Chem

Unit for Analytical Probes and Protein Biotechnology, Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.

Published: February 2013

Spectrophotometric-dual-enzyme-simultaneous assay in one reaction solution (SDESA) is proposed. SDESA requires the following: (a) Enzyme A acts on Substrate A to release Product A bearing the longest difference absorbance peak (λ(A)) much larger than that of Product B (λ(B)) formed by Enzyme B action on Substrate B; λ(B) is close to the longest isoabsorbance wavelength of Product A and Substrate A (λ(0)); (b) absorbance at λ(A) and λ(0) is quantified via swift alternation of detection wavelengths and corrected on the basis of absorbance additivity; (c) inhibition/activation on either enzyme by any substance is eliminated; (d) Enzyme A is quantified via an integration strategy if levels of Substrate A are lower than the Michaelis constant. Chemometrics of SDESA was tested with γ-glutamyltransferase and lactate-dehydrogenase of complicated kinetics. γ-Glutamyltransferase releases p-nitroaniline from γ-glutamyl-p-nitroaniline with λ(0) at 344 nm and λ(A) close to 405 nm, lactate-dehydrogenase consumes reduced nicotinamide dinucleotide bearing λ(B) at 340 nm. Kinetic analysis of reaction curve yielded lactate-dehydrogenase activity free from inhibition by p-nitroaniline; the linear range of initial rates of γ-glutamyltransferase via the integration strategy, and that of lactate-dehydrogenase after interference elimination, was comparable to those by separate assays, respectively; the quantification limit of either enzyme by SDESA at 25-fold higher activity of the other enzyme remained comparable to that by a separate assay. To test potential application, SDESA of alkaline phosphatase (ALP) and β-D-galactosidase as enzyme-linked-immunoabsorbent assay (ELISA) labels were examined. ALP releases 4-nitro-1-naphthol from 4-nitronaphthyl-1-phosphate with λ(0) at 405 nm and λ(A) at 458 nm, β-D-galactosidase releases 4-nitrophenol from β-D-(4-nitrophenyl)-galactoside with λ(B) at 405 nm. No interference from substrates/products made SDESA of β-galactosidase and ALP simple for ELISA of penicillin G and clenbuterol in one well, and the quantification limit of either hapten was comparable to that via a separate assay. Hence, SDESA is promising.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac302786pDOI Listing

Publication Analysis

Top Keywords

comparable separate
12
spectrophotometric-dual-enzyme-simultaneous assay
8
assay reaction
8
reaction solution
8
integration strategy
8
quantification limit
8
separate assay
8
sdesa
7
enzyme
6
solution chemometrics
4

Similar Publications

Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.

View Article and Find Full Text PDF

Detection of Extracochlear Electrodes Using Electrical Field Imaging (EFI).

Otol Neurotol

February 2025

Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota.

Objective: To analyze the use of electrical field imaging (EFI) in the detection of extracochlear electrodes in cochlear implants (CI).

Study Design: Retrospective cohort study.

Setting: Tertiary academic medical center.

View Article and Find Full Text PDF

Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?

Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.

What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.

View Article and Find Full Text PDF

Effects of kinesio taping on lower limb biomechanical characteristics during dynamic postural control tasks in individuals with chronic ankle instability.

PLoS One

January 2025

Key Laboratory of Sports Engineering of General Administration of Sport of China, Wuhan Sports University, Wuhan, Hubei Province, China.

Purpose: Previous studies have demonstrated significant biomechanical differences between individuals with chronic ankle instability (CAI) and healthy controls during the Y-balance test. This study aimed to examine the effects of kinesio taping (KT) on lower limb biomechanical characteristics during the Y-balance anterior reach task in individuals with CAI.

Methods: A total of 30 participants were recruited, comprising 15 individuals with CAI and 15 healthy controls.

View Article and Find Full Text PDF

Heterojunctions, known for their decent separation of photo-generated electrons and holes, are promising for photocatalytic CO reduction. However, a significant obstacle in traditional post-assembled heterojunctions is the high interfacial barrier for charge transfer caused by atomic lattice mismatch at multiphase interfaces. Here, as research prototypes, the study creates a lattice-matched co-atomic interface within CsPbBr-CsPbBr polytypic nanocrystals (113-125 PNs) through the proposed in situ hybrid strategy to elucidate the underlying charge transfer mechanism within this unique interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!