Synthesis of phenanthridine derivatives by microwave-mediated cyclization of o-furyl(allylamino)arenes.

J Org Chem

Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway.

Published: February 2013

A novel and efficient synthesis of phenanthridines and aza analogues is reported. The key step is a microwave-mediated intramolecular Diels-Alder cyclization of o-furyl(allylamino)arenes. In the presence of a catalytic amount of acid, the DA-adduct reacts further to give the dihydrophenanthridines, which easily can be oxidized to fully aromatic compounds by air in the presence of UV light or by DDQ.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo3027033DOI Listing

Publication Analysis

Top Keywords

cyclization o-furylallylaminoarenes
8
synthesis phenanthridine
4
phenanthridine derivatives
4
derivatives microwave-mediated
4
microwave-mediated cyclization
4
o-furylallylaminoarenes novel
4
novel efficient
4
efficient synthesis
4
synthesis phenanthridines
4
phenanthridines aza
4

Similar Publications

The Lewis acid-catalyzed coupling of alkenes and aldehydes presents a modern, versatile synthetic alternative to classical carbonyl addition chemistry, offering exceptional regio- and stereoselectivity. In this work, we present a comprehensive computational investigation into the reaction mechanism of this transformation. Our findings confirm the occurrence of an enantioselective trans-annular [1,5]-hydride shift step and demonstrate that the enantioselectivity of the reaction arises predominantly from steric clashes between functional groups in the cyclization step.

View Article and Find Full Text PDF

Review on the o-aminoaniline Moiety in Peptide and Protein Chemistry.

Chembiochem

January 2025

University of Wisconsin-Madison, Pharmacy, 777 Highland Ave, 53705, Madison, UNITED STATES OF AMERICA.

Peptides and proteins are important functional biomolecules both inside and outside of living organisms. The ability to prepare various types of functionalized peptides and proteins is essential for understanding fundamental biological processes, such as protein folding and post-translational modifications (PTMs), and for developing new therapeutics for many diseases, such as cancers and neurodegenerative diseases. The o-aminoaniline moiety was first proposed for activation to a thioester precursor and used for native chemical ligation to prepare large peptides and proteins.

View Article and Find Full Text PDF

Reactions of Tertiary Aliphatic Cations with Silylated Alkynes: Substitution, Cyclization and Unexpected C-H Activation Products.

Chemistry

January 2025

Université de Rennes 1, Chemistry, Equipe CORINT, Institut des Sciences Chimiques de Rennes, Université de Rennes 1 - UMR 6226 CNRS, Bâtiment 10A, Bureau 158, Avenue du Général Leclerc, 35042, Rennes, FRANCE.

Capozzi's groundbreaking work in 1982 introduced a fascinating reaction involving highly reactive tertiary aliphatic cations and silylated alkynes. This reaction provided an innovative solution to the challenge of coupling a fully substituted tertiary aliphatic fragment with an alkyne moiety. Building upon Capozzi's pioneering efforts, we started an extensive exploration of reaction conditions to expand the initial scope of this reaction.

View Article and Find Full Text PDF

Mycobacidin is an antitubercular antibiotic structurally composed of a sulfur-containing 4-thiazolidinone ring, yet its biosynthesis including the mechanism of sulfur incorporation has remained an open question since its discovery in 1952. In this study, the mycobacidin biosynthetic gene cluster is identified from soil-dwelling , and the corresponding biosynthetic pathway starting with 7-oxoheptanoate is characterized. The radical SAM enzyme MybB catalyzes two sulfur insertion reactions, thereby bridging C and C to complete the 4-thiazolidinone heterocycle as the final step in mycobacidin maturation.

View Article and Find Full Text PDF

Structure Diversity and Properties of Some Bola-like Natural Products.

Mar Drugs

December 2024

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia.

In their shapes, molecules of some bipolar metabolites resemble the so-called bola, a hunting weapon of the South American inhabitants, consisting of two heavy balls connected to each other by a long flexible cord. Herein, we discuss the structures and properties of these natural products (bola-like compounds or bolaamphiphiles), containing two polar terminal fragments and a non-polar chain (or chains) between them, from archaea, bacteria, and marine invertebrates. Additional modifications of core compounds of this class, for example, interchain and intrachain cyclization, hydroxylation, methylation, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!