Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A novel design of nerve communications and networks using the coupling effects between bio-cells and optical dipoles is proposed. The electrical signals are coupled to the dipoles and cells which propagate within the optical networks for long distance without any electromagnetic interference. Results have shown that the use of optical spins in the spin networks, referred as Spinnet, can be formed. This technique can be used to improve the nerve communication performance. It is fabricated as a nano-biotic circuit system, and has great potential for future disability applications and diagnosis of the links of nerves across the dead cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/21691401.2012.759124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!