Learning and memory require orchestrated regulation of both structural and functional synaptic plasticity in the hippocampus. While a neuropeptide alpha-melanocyte-stimulating hormone, α-MSH, has been implicated in memory acquisition and retention, the functional role of its cognate receptor, melanocortin-4 receptor (MC4R), in hippocampal-dependent synaptic plasticity has not been explored. In this study, we report that activation of MC4R enhances synaptic plasticity through the regulation of dendritic spine morphology and abundance of AMPA receptors. We show that activation of postsynaptic MC4R increases the number of mature dendritic spines and enhances surface expression of AMPA receptor subunit GluA1, resulting in synaptic accumulation of GluA1-containing AMPA receptors. Moreover, MC4R stimulates surface GluA1 trafficking through phosphorylation of GluA1 at Ser845 in a Gα(s)-cAMP/PKA-dependent manner. Blockade of protein kinase A (PKA) signaling abolishes the MC4R-mediated enhancement of neurotransmission and hippocampal long-term potentiation. Importantly, in vivo application of MC4R agonists increases LTP in the mouse hippocampal CA1 region. These findings reveal that MC4R in the hippocampus plays a critical role in the regulation of structural and functional plasticity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704894 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.3282-12.2013 | DOI Listing |
Rev Neurosci
January 2025
School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China.
Cholecystokinin (CCK) is a major neuropeptide in the brain that functions as a neurotransmitter, hormone, and growth factor. The peptide and its receptors are widely expressed in the brain. CCK signaling modulates synaptic plasticity and can improve or impair memory formation, depending on the brain areas studies and the receptor subtype activated.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Nursing Science, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.
This review investigates the intricate relationship between exercise, brain-derived neurotrophic factor (BDNF), neuroplasticity, and cognitive function, with a focus on implications for neuropsychiatric and neurodegenerative disorders. A systematic review was conducted by searching various databases for relevant studies that explored the connections between exercise, BDNF, neuroplasticity, and cognitive health. The analysis of eligible studies revealed that exercise increases BDNF levels in the brain, promoting neuroplasticity and enhancing cognitive functions.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea.
Neuropathic pain, caused by nerve damage, greatly affects quality of life. Recent research proposes modulating brain activity, particularly through electrical stimulation of the insular cortex (IC), as a treatment option. This study aimed to understand how IC stimulation (ICS) affects pain modulation.
View Article and Find Full Text PDFCureus
December 2024
School of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, IND.
Introduction: Sleep deprivation (SD), stemming from a myriad of aetiologies, is a prevalent health condition frequently overlooked. It typically impairs memory consolidation and synaptic plasticity, potentially through neuroinflammatory mechanisms and adenosinergic signalling. It is still unclear whether the adenosine A1 receptor (A1R) modulates SD-induced neurological deficits in the hippocampus.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China.
Alzheimer's disease (AD) is the most prevalent type of dementia. Treatments for AD do not reverse the loss of brain function; rather, they decrease the rate of cognitive deterioration. Current treatments are ineffective in part because they do not address neurotrophic mechanisms, which are believed to be critical for functional recovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!