Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201202096 | DOI Listing |
ACS Nano
January 2025
College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China.
Chiral plasmonic nanomaterials with fascinating physical and chemical properties show emerging chirality-dependent applications in photonics, catalysis, and sensing. The capability to precisely manipulate the plasmonic chirality in a broad spectral range plays a crucial role in enabling the applications of chiral nanomaterials in diverse and complex scenarios; however, it remains a challenge yet to be addressed. Here we demonstrate a strategy to significantly enhance the tunability of circular dichroism (CD) spectra of chiral nanomaterials by constructing core-shell hybrid metal-semiconductor structures with tailored shells.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China.
The intentional manipulation of carrier characteristics serves as a fundamental principle underlying various energy-related and optoelectronic semiconductor technologies. However, achieving switchable and reversible control of the polarity within a single material to design optimized devices remains a significant challenge. Herein, we successfully achieved dramatic reversible p-n switching during the semiconductor‒semiconductor phase transition in BiI via pressure, accompanied by a substantial improvement in their photoelectric properties.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
Auxetic materials hold tremendous potential for many advanced applications, but candidates are quite scarce, especially at two dimensions. Here, we focus on two-dimensional (2D) metal dichalcogenides and dihalides with the chemical formula MX2 by screening structures sharing the P4̄m2 space group among 330 MX2 compounds from the computational 2D materials database. Via high-throughput first-principles computations, 25 stable MX2 (M = Mg, Ca, Mn, Co, Ni, Cu, Zn, Ge, Cd, Sn; X = F, Cl, Br, I, O, S, Se) systems with in-plane negative Poisson's ratios (NPRs) are successfully identified.
View Article and Find Full Text PDFChem Asian J
December 2024
Department of chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
Metal-organic gels (MOGs) are a type of supramolecular complex that have become highly intriguing due to their synergistic combination of inorganic and organic elements. We report the synthesis and characterization of a Ni-directed supramolecular gel using chiral amino acid L-DOPA (3,4-dihydroxy phenylalanine) containing ligand, which coordinates with Ni(II) to form metal-organic gels with exceptional properties. The functional Ni(II)-gel was synthesized by heating nickel(II) acetate hexahydrate and the L-DOPA containing ligand in DMSO at 70 °C.
View Article and Find Full Text PDFNat Commun
December 2024
Engineering Science and Mechanics, Penn State University, University Park, PA, USA.
Incipient ferroelectricity bridges traditional dielectrics and true ferroelectrics, enabling advanced electronic and memory devices. Firstly, we report incipient ferroelectricity in freestanding SrTiO nanomembranes integrated with monolayer MoS to create multifunctional devices, demonstrating stable ferroelectric order at low temperatures for cryogenic memory devices. Our observation includes ultra-fast polarization switching (~10 ns), low switching voltage (<6 V), over 10 years of nonvolatile retention, 100,000 endurance cycles, and 32 conductance states (5-bit memory) in SrTiO-gated MoS transistors at 15 K and up to 100 K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!