Targeted genome-wide methylation and gene expression analyses reveal signaling pathways involved in ovarian dysfunction after developmental EDC exposure in rats.

Biol Reprod

Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.

Published: February 2013

Transient exposure to methoxychlor (MXC), an environmental endocrine-disrupting chemical, during fetal and neonatal stages causes ovarian dysfunction in pubertal, adult, and aging animals. Adult animals have reduced number of ovulations and abnormal follicular composition associated with altered gene expression and DNA methylation patterns. To test the hypothesis that the ovarian epigenomic changes induced by MXC are detectable following the exposure period, leading to altered gene expression by adulthood, we conducted a targeted genome-wide methylation study using Nimblegen 3x720K CpG Island Plus RefSeq Promoter Arrays. Control (vehicle), low-dose MXC (20 μg/kg/day), or high-dose MXC (100 mg/kg/day) treatments were administered between Embryonic Day 19 and Postnatal Day (PND) 7. Ovaries were collected at PND 7 immediately after exposure or at adulthood, PND 60. Array hybridizations were conducted with genomic DNA after methylated DNA immunoprecipitation and the array data were analyzed. DNA methylation events were functionally annotated, and candidate loci common to all the treatments or unique to some treatments were identified. Specific loci encoding signaling molecules such as the regulatory subunit p85 of phosphoinositide-3-kinase, insulin-like growth factor-1 receptor, Harvey rat sarcoma viral oncogene, insulin receptor, and forkhead box protein O3 were identified to be hypermethylated in MXC-treated ovaries at PND 7 and/or PND 60. Examination of gene expression changes with TaqMan low-density arrays revealed that nearly 25% of the genes that were assayed were downregulated. These data demonstrate that key molecules in specific signaling pathways such as PTEN signaling, IGF-1 signaling, or rapid estrogen signaling are epigenetically altered in MXC-exposed ovaries, which is associated with ovarian dysfunction and female infertility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589238PMC
http://dx.doi.org/10.1095/biolreprod.112.104802DOI Listing

Publication Analysis

Top Keywords

gene expression
16
ovarian dysfunction
12
targeted genome-wide
8
genome-wide methylation
8
signaling pathways
8
altered gene
8
dna methylation
8
signaling
6
pnd
5
methylation
4

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!