Bone mineralization is a normal physiological process, whereas ectopic calcification of soft tissues is a pathological process that leads to irreversible tissue damage. We have established a coxsackievirus B3 (CVB3)-infected mouse model that manifests both osteoporosis and ectopic calcification specifically in heart, pancreas, and lung. The CVB3-infected mice showed increased serum concentrations of both cytokines including IL-1β, TNF-α, and the receptor activator of NF-κB ligand (RANKL) that stimulate osteoclast formation and of the osteoclast-derived protein tartrate-resistant acid phosphatase 5b. They exhibited more osteoclasts in bone, with no change in the number of osteoblasts, and a decrease in bone formation and the serum concentration of osteoblast-produced osteocalcin. These results indicate that CVB3-induced osteoporosis is likely due to upregulation of osteoclast formation and function, in addition to decreased osteoblast activity. In addition, the serum in the CVB3-infected mice contained a high inorganic phosphate content, which causes ectopic calcification. RANKL treatment induced an increase in the in vitro cardiac fibroblast calcification by inorganic phosphate via the upregulation of osteogenic BMP2, SPARC, Runx2, Fra-1, and NF-κB signaling. We finally observed that i.p. administration of RANK-Fc, a recombinant antagonist of RANKL, prevented bone loss as well as ectopic calcification in CVB3-infected mice. Thus, our results indicate that RANKL may contribute to both abnormal calcium deposition in soft tissues and calcium depletion in bone. In addition, our animal model should provide a tool for the development of new therapeutic agents for calcium disturbance in soft and hard tissues.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1201479DOI Listing

Publication Analysis

Top Keywords

ectopic calcification
16
cvb3-infected mice
12
bone loss
8
soft tissues
8
osteoclast formation
8
inorganic phosphate
8
bone
6
calcification
6
targeting osteoclastogenic
4
osteoclastogenic rankl-rank
4

Similar Publications

Calcium deposition in vascular smooth muscle cells (VSMCs), a form of ectopic ossification in blood vessels, can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that CCAAT/enhancer-binding protein beta (C/EBPβ) potentiates calcium deposition in VSMCs and mouse aorta induced by inorganic phosphate (Pi) or vitamin D. Based on cDNA microarray and RNA sequencing data of Pi-treated rat VSMCs, C/EBPβ was found to be upregulated and thus selected for further evaluation.

View Article and Find Full Text PDF

There is a new awareness of the widespread nature of metabolic dysfunction-associated steatotic liver disease (MASLD) and its connection to cardiovascular disease (CVD). This has catalyzed collaboration between cardiologists, hepatologists, endocrinologists, and the wider multidisciplinary team to address the need for earlier identification of those with MASLD who are at increased risk for CVD. The overlap in the pathophysiologic processes and parallel prevalence of CVD, metabolic syndrome, and MASLD highlight the multisystem consequences of poor cardiovascular-liver-metabolic health.

View Article and Find Full Text PDF

Background: Obesity, bone-related and cardiovascular diseases (CVD) are among the leading global health concerns. Growing evidence suggests that these conditions share common pathophysiological pathways and disease outcomes. PATHOGENETIC INTERACTIONS OF OBESITY, CVD AND BONE-RELATED DISEASES: Obesity is a well-established risk factor for atherosclerotic CVD (ASCVD), as dysfunctional ectopic adipose tissue may produce endocrine/paracrine hormones modulating metabolic processes and inflammation, predisposing to ASCVD.

View Article and Find Full Text PDF

Matrix Gla protein (MGP) is a vitamin K-dependent γ-carboxylated protein that was initially identified as a physiological inhibitor of ectopic calcification, primarily affecting cartilage and the vascular system. Mutations in the gene were found to be responsible for the Keutel syndrome, a condition characterized by abnormal calcifications in the cartilage, lungs, brain, and vascular system. has been shown to be dysregulated in several tumors, including cervical, ovarian, urogenital, and breast cancers.

View Article and Find Full Text PDF

Introduction: Hyperphosphatemia in advanced CKD often accompanies high PTH and FGF23 levels, impaired bone mineralization, ectopic calcifications, and increased cardiovascular risks. Novel treatments are now available to lower serum phosphorus effectively. However, safety, tolerability, and patient adherence must be evaluated to determine the best therapeutic option for hyperphosphatemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!