Despite African rivers containing high species diversity, continental-scale studies investigating the mechanisms generating biological diversity of African riverine faunas are limited compared with lacustrine systems. To investigate the build-up of diversity in a tropical aquatic continental radiation, we test different models of lineage diversification and reconstruct the biogeographic history in a species-rich siluriform genus, Synodontis (~130 species), with a broad distribution across all major tropical African drainage basins. The resulting robust species-level phylogeny (~60% complete, based on a multigene data set) exhibits a near constant rate of lineage accumulation throughout the mid-Cenozoic to recent, irrespective of missing species and despite the changing environmental conditions that were prevalent during this time period. This pattern contrasts with the findings for species-level diversification of large clades that commonly show an early burst of cladogenesis followed by declining rates through time. The identification of distinct biogeographic clades demonstrates a correlation between river hydrology and cladogenesis, although there is evidence of recent repeat dispersal into the southern range of the focal group. We conclude that diverse freshwater fish radiations with tropical continental distributions represent important organisms to test hypotheses of diversification and investigate the effects of palaeo-landscapes and climates on present day biodiversity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/sysbio/syt001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!