A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. | LitMetric

Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a.

Am J Physiol Cell Physiol

Metabolic Signaling and Disease Program, Diabetes and Obesity Research Center, Sanford Burnham Medical Research Institute at Lake Nona, 6400 Sanger Rd., Orlando, FL 32837, USA.

Published: March 2013

Hyperglycemia-induced cardiomyocyte apoptosis contributes to diabetic cardiomyopathy. Glucagon-like peptide-1 (Glp1) receptor (Glp1r) agonists improve cardiac function and survival in response to ischemia-reperfusion and myocardial infarction. The present studies assessed whether Glp1r activation exerts direct cardioprotective effects in response to hyperglycemia. Treatment with the Glp1r agonist Exendin-4 attenuated apoptosis in neonatal rat ventricular cardiomyocytes cultured in high (33 mM) glucose. This protective effect was mimicked by the cAMP inducer forskolin. The Exendin-4 protective effect was blocked by the Glp1r antagonist Exendin(9-39) or the PKA antagonist H-89. Exendin-4 also protected cardiomyocytes from hydrogen peroxide (H2O2)-induced cell death. Cardiomyocyte protection by Exendin-4 was not due to reduced reactive oxygen species levels. Instead, Exendin-4 treatment reduced endoplasmic reticulum (ER) stress, demonstrated by decreased expression of glucose-regulated protein-78 (GRP78) and CCAT/enhancer-binding homologous protein (CHOP). Reduced ER stress was not due to activation of the unfolded protein response, indicating that Exendin-4 directly prevents ER stress. Exendin-4 treatment selectively protected cardiomyocytes from thapsigargin- but not tunicamycin-induced death. This suggests that Exendin-4 attenuates thapsigargin-mediated inhibition of the sarco/endoplasmic reticulum Ca(2+) ATPase-2a (SERCA2a). High glucose attenuates SERCA2a function by reducing SERCA2a mRNA and protein levels, but Exendin-4 treatment prevented this reduction. Exendin-4 treatment also enhanced phosphorylation of the SERCA2a regulator phospholamban (PLN), which would be expected to stimulate SERCA2a activity. In sum, Glp1r activation attenuates high glucose-induced cardiomyocyte apoptosis in association with decreased ER stress and markers of enhanced SERCA2a activity. These findings identify a novel mechanism whereby Glp1-based therapies could be used as treatments for diabetic cardiomyopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00248.2012DOI Listing

Publication Analysis

Top Keywords

exendin-4 treatment
16
cardiomyocyte apoptosis
12
exendin-4
11
exendin-4 attenuates
8
attenuates high
8
high glucose-induced
8
glucose-induced cardiomyocyte
8
endoplasmic reticulum
8
reticulum stress
8
stress activation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!