The performance of a fast optical computed tomography (CT) scanner based on a point laser source, a small area photodiode detector, and two optical-grade Fresnel lenses is evaluated. The OCTOPUS™-10× optical CT scanner (MGS Research Inc., Madison, CT) is an upgrade of the OCTOPUS™ research scanner with improved design for faster motion of the laser beam and faster data acquisition process. The motion of the laser beam in the new configuration is driven by the rotational motion of a scanning mirror. The center of the scanning mirror and the center of the photodiode detector are adjusted to be on the focal points of two coaxial Fresnel lenses. A glass water tank is placed between the two Fresnel lenses to house gel phantoms and matching liquids. The laser beam scans over the water tank in parallel beam geometry for projection data as the scanning mirror rotates at a frequency faster than 0.1 s per circle. Signal sampling is performed independently of the motion of the scanning mirror, to reduce the processing time for the synchronization of the stepper motors and the data acquisition board. An in-house developed reference image normalization mechanism is added to the image reconstruction program to correct the non-uniform light transmitting property of the Fresnel lenses. Technical issues with regard to the new design of the scanner are addressed, including projection data extraction from raw data samples, non-uniform pixel averaging and reference image normalization. To evaluate the dosimetric accuracy of the scanner, the reconstructed images from a 16 MeV, 6 cm × 6 cm electron field irradiation were compared with those from the Eclipse treatment planning system (Varian Corporation, Palo Alto, CA). The spatial resolution of the scanner is demonstrated to be of sub-millimeter accuracy. The effectiveness of the reference normalization method for correcting the non-uniform light transmitting property of the Fresnel lenses is analyzed. A sub-millimeter accuracy of the phantom positioning between the reference scan and the actual scan is demonstrated to be essential. The fast scanner is shown to be able to scan gel phantoms with a wider field of view (5 mm from the edge of the scanned dosimeters) and at a speed 10 to 20 times faster than the OCTOPUS™ scanner. A large uncertainty of 5% (defined as the ratio of the standard deviation to the mean) is typically observed in the reconstructed images, owing to the inaccuracy in the phantom positioning process. Methods for further improvement of the accuracy of the in-house modified OCTOPUS™-10× scanner are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/58/3/479 | DOI Listing |
Light Sci Appl
January 2025
Institute for Photon Science and Technology, The University of Tokyo, Tokyo, Japan.
Light manipulation and control are essential in various contemporary technologies, and as these technologies evolve, the demand for miniaturized optical components increases. Planar-lens technologies, such as metasurfaces and diffractive optical elements, have gained attention in recent years for their potential to dramatically reduce the thickness of traditional refractive optical systems. However, their fabrication, particularly for visible wavelengths, involves complex and costly processes, such as high-resolution lithography and dry-etching, which has limited their availability.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore.
Spatially selective imaging (SSI) involves sampling a group of pixels from different positions on an encoded object to display a decoded image. Here, SSI is achieved by using off-axis cylindrical Fresnel lens arrays to decode multiple images from an encoded print of structural color pixels. Each image is optically retrieved by separately placing different "keys" (arrays of lenses in different pseudorandom configurations) over the same encoded print, and then each image is digitally reconstructed for visualization.
View Article and Find Full Text PDFSensors (Basel)
November 2024
State Key Laboratory of ASIC and System, Key Laboratory for Information Science of Electromagnetic Waves (MoE), School of Information Science and Technology, Fudan University, Shanghai 200433, China.
In terahertz communication systems, lens antennas used in transceivers are basically plano-convex dielectric lenses. The size of a plano-convex lens increases as the aperture increases, and thinner lenses have longer focal lengths. Through theory and simulation, we designed a Fresnel lens suitable for the terahertz band to meet the requirements of large aperture and short focal length, and simulated the performance, advantages, and disadvantages of the terahertz Fresnel lens.
View Article and Find Full Text PDFPhotoacoustics
February 2025
Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, Nottinghamshire, United Kingdom.
In this paper, we demonstrate for the first time the focusing of gigahertz coherent phonon pulses propagating in water using picosecond ultrasonics and Brillouin light scattering. We achieve this by using planar Fresnel zone plate and concave lenses with different focal lengths. Pump light illuminating the optoacoustic lens generates a focusing acoustic field, and Brillouin scattered probe light allows the acoustic field to be continuously monitored over time.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran.
This research examines, using both theory and experimentation, how a light beam's spatial coherence affects a sinusoidal linear Fresnel zone plate's depth of focus. We generate a one-dimensional partially coherent Gaussian Schell-model beam from a coherent laser beam through putting a rotating diffuser near to the common focal plane of two cylindrical lenses in a 2f-system. By adjusting the beam spot size on the diffuser, one may modify the coherence width of the produced beam.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!