Background: Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor with poor clinical outcome. Identification and development of new markers could be beneficial for the diagnosis and prognosis of GBM patients. Deregulation of microRNAs (miRNAs or miRs) is involved in GBM. Therefore, we attempted to identify and develop specific miRNAs as prognostic and predictive markers for GBM patient survival.
Methods: Expression profiles of miRNAs and genes and the corresponding clinical information of 480 GBM samples from The Cancer Genome Atlas (TCGA) dataset were downloaded and interested miRNAs were identified. Patients' overall survival (OS) and progression-free survival (PFS) associated with interested miRNAs and miRNA-interactions were performed by Kaplan-Meier survival analysis. The impacts of miRNA expressions and miRNA-interactions on survival were evaluated by Cox proportional hazard regression model. Biological processes and network of putative and validated targets of miRNAs were analyzed by bioinformatics.
Results: In this study, 6 interested miRNAs were identified. Survival analysis showed that high levels of miR-326/miR-130a and low levels of miR-323/miR-329/miR-155/miR-210 were significantly associated with long OS of GBM patients, and also showed that high miR-326/miR-130a and low miR-155/miR-210 were related with extended PFS. Moreover, miRNA-323 and miRNA-329 were found to be increased in patients with no-recurrence or long time to progression (TTP). More notably, our analysis revealed miRNA-interactions were more specific and accurate to discriminate and predict OS and PFS. This interaction stratified OS and PFS related with different miRNA levels more detailed, and could obtain longer span of mean survival in comparison to that of one single miRNA. Moreover, miR-326, miR-130a, miR-155, miR-210 and 4 miRNA-interactions were confirmed for the first time as independent predictors for survival by Cox regression model together with clinicopathological factors: Age, Gender and Recurrence. Plus, the availability and rationality of the miRNA-interaction as predictors for survival were further supported by analysis of network, biological processes, KEGG pathway and correlation analysis with gene markers.
Conclusions: Our results demonstrates that miR-326, miR-130a, miR-155, miR-210 and the 4 miRNA-interactions could serve as prognostic and predictive markers for survival of GBM patients, suggesting a potential application in improvement of prognostic tools and treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551827 | PMC |
http://dx.doi.org/10.1186/1479-5876-11-10 | DOI Listing |
Drug Resist Updat
January 2025
Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China. Electronic address:
Radioresistance remains a great challenge for radiotherapy in the treatment of glioblastoma (GBM). PD-L1 expression is a key contributor to radioresistance and immune escape in GBM. The lack of effective methods to monitor the change of PD-L1 during radiotherapy in patients limits timely intervention and management of the resistance.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Radiation Oncology, The Second Hospital of Lanzhou University, Lanzhou, China.
Background: Within the realm of primary brain tumors, specifically glioblastoma (GBM), presents a notable obstacle due to their unfavorable prognosis and differing median survival rates contingent upon tumor grade and subtype. Despite a plethora of research connecting cardiotrophin-1 (CTF1) modifications to a range of illnesses, its correlation with glioma remains uncertain. This study investigated the clinical value of CTF1 in glioma and its potential as a biomarker of the disease.
View Article and Find Full Text PDFHeliyon
January 2025
Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK.
Isocitrate dehydrogenase wild-type glioblastoma (GBM) is characterised by a heterogeneous genetic landscape resulting from dynamic competition between tumour subclones to survive selective pressures. Improvements in metabolite identification and metabolome coverage have led to increased interest in clinically relevant applications of metabolomics. Here, we use liquid chromatography-mass spectrometry and gene expression microarray to profile integrated intratumour metabolic heterogeneity, as a direct functional readout of adaptive responses of subclones to the tumour microenvironment.
View Article and Find Full Text PDFJ Arthroplasty
January 2025
Department of Orthopaedics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden.
Introduction: The choice between cemented and cementless fixation in primary elective total hip arthroplasty (THA) remains a subject of ongoing debate. However, comparisons between the two are subject to limited adjustments for patient characteristics, diagnoses, and surgical factors, as well as by limited outcome time endpoints. Our study aimed to compare the effect of femoral fixation on safety and implant survival outcomes in matched patients.
View Article and Find Full Text PDFChilds Nerv Syst
January 2025
Department of Neurosurgery, Hospital da Restauração, Avenida Agamenon Magalhães, S/N, Derby, Recife, PE, 52171-011, Brazil.
Introduction: Glioblastomas (GBM) are aggressive tumors that make up about 7% of central nervous system tumors in children. Spinal GBMs (sGBMs) are extremely rare, accounting for less than 1% of pediatric spinal tumors. sGBMs are difficult to treat due to their infiltrative nature and cause significant morbidity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!