[(1)H-MRS study of auditory cortex in patients with presbycusis].

Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi

Department of Otorhinolaryngology Head and Neck Surgery, Fuzhou General Hospital of People's Liberation Army, Fuzhou , China.

Published: October 2012

Objective: To study the metabolic changes of auditory cortex in patients with presbycusis by using proton magnetic resonance spectroscopy ((1)H-MRS).

Methods: Ten normal hearing volunteers (youth group), 10 normal hearing of elderly (aged group) and 8 patients with presbycusis (presbycusis group) were checked with proton magnetic resonance spectroscopy. N-acetylaspartic acid (NAA), creatine (Cr), choline (Cho), γ-aminobutyric acid (GABA), glutamic acid (Glu) compound were measured. The differences between the groups were semi-quantitatively analyzed.

Results: When compared with youth group, reduced NAA/Cr, increased Cho/Cr were found in the aged group and presbycusis group (P < 0.05). GABA/Cr ratio and Glu/Cr ratio were significant difference between presbycusis group and youth group (P < 0.05). There were no significant difference in the GABA/Cr and Glu/Cr ratios in the bilateral auditory cortex between the youth group and the aged group (P > 0.05). When compared with aged group, the metabolic changes of auditory cortex in patients with presbycusis were remarkable (P < 0.05).

Conclusions: (1)H-MRS is a noninvasive technique that can provide useful information concerning the metabolic changes of auditory cortex in human. In comparison to the aged group and the youth group, the changes of NAA, GABA, Cho and Glu is found in auditory cortex in patients with presbycusis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

auditory cortex
24
youth group
20
aged group
20
cortex patients
16
patients presbycusis
16
group
13
metabolic changes
12
changes auditory
12
presbycusis group
12
group 005
12

Similar Publications

When we listen to speech, our brain's neurophysiological responses "track" its acoustic features, but it is less well understood how these auditory responses are enhanced by linguistic content. Here, we recorded magnetoencephalography (MEG) responses while subjects of both sexes listened to four types of continuous-speech-like passages: speech-envelope modulated noise, English-like non-words, scrambled words, and a narrative passage. Temporal response function (TRF) analysis provides strong neural evidence for the emergent features of speech processing in cortex, from acoustics to higher-level linguistics, as incremental steps in neural speech processing.

View Article and Find Full Text PDF

Synaptically released zinc is a neuronal signaling system that arises from the actions of the presynaptic vesicular zinc transporter protein ZnT3. Mechanisms that regulate the actions of zinc at synapses are of great importance for many aspects of synaptic signaling in the brain. Here, we identify the astrocytic zinc transporter protein ZIP12 as a candidate mechanism that contributes to zinc clearance at cortical synapses.

View Article and Find Full Text PDF

The processing of stationary sounds relies on both local features and compact representations. As local information is compressed into summary statistics, abstract representations emerge. Whether the brain is endowed with distinct neural architectures predisposed to such computations is unknown.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) can be diagnosed by in vivo abnormalities of amyloid-β plaques (A) and tau accumulation (T) biomarkers. Previous studies have shown that analyses of serial position performance in episodic memory tests, and especially, delayed primacy, are associated with AD pathology even in individuals who are cognitively unimpaired. The earliest signs of cortical tau pathology are observed in medial temporal lobe (MTL) regions, yet it is unknown if serial position markers are also associated with early tau load in these regions.

View Article and Find Full Text PDF

Neural processing of auditory stimuli in rats: translational aspects using auditory oddball paradigms.

Behav Brain Res

January 2025

Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany; Center for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany.

Background: The three-class oddball paradigm allows to investigate the processing of behaviorally relevant and irrelevant auditory stimuli. In humans, event-related potentials (ERPs) are used as neural correlate of behavior. We recorded local field potentials (LFPs) within the medial prefrontal cortex (mPFC) in rats during three-class and passive two-class oddball paradigms and analyzed the ERPs focusing on similarities to human recordings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!