VP1, the major coat protein of polyomavirus, assembles intracellularly to virus-like particles if expressed in eukaryotes. Here, the nonconventional yeast Kluyveromyces lactis was used for production of virus-like particles of murine polyomavirus. The heterologous gene of VP1 was integrated in the LAC4 locus of the GAL/LAC genes. Consequently the expression of VP1 is regulated by the interplay of the activator KlGal4p and inhibitor KlGal80p. This cloning strategy couples the production of VP1 to that of the enzyme β -galactosidase, allowing a fast alternative for monitoring the course of recombinant protein production by measuring the β -galactosidase activity. A Klgal80 knockout strain was generated for a constitutive expression of VP1 and a continuous VLP production. High-cell-density fermentation showed that (1) Kluyveromyces lactis is generally suitable for VLP production and (2) the Klgal80 knockout strain produces higher amounts of recombinant VP1. Furthermore, VLPs could be purified chromatographically to 87% (w/w) of total protein, and showed a homogeneous species of 45-nm particles and a high resistance against proteolysis compared to conventional in vitro assembled VLPs. This demonstrates the superior stability of virus-like particles produced in yeast.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10826068.2012.750613DOI Listing

Publication Analysis

Top Keywords

klgal80 knockout
12
knockout strain
12
kluyveromyces lactis
12
virus-like particles
12
yeast kluyveromyces
8
expression vp1
8
vlp production
8
production
6
vp1
6
particles
5

Similar Publications

VP1, the major coat protein of polyomavirus, assembles intracellularly to virus-like particles if expressed in eukaryotes. Here, the nonconventional yeast Kluyveromyces lactis was used for production of virus-like particles of murine polyomavirus. The heterologous gene of VP1 was integrated in the LAC4 locus of the GAL/LAC genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!