Coagulopathy after traumatic brain injury (TBI) is frequent and represents a powerful predictor related to outcome and prognosis. The complex pathophysiological mechanisms of the coagulopathy of TBI are multifactorial and remain still undefined. The nature of the coagulation abnormalities differs between severe TBI and non-TBI with somatic injuries. The current hypothesis for the development of coagulopathy after TBI includes combinations of both hypo- and hypercoagulable states promoted by the magnitude and the extent of the injury resulting in a variable degree of secondary injury via subsequent ischemic and hemorrhagic lesioning. The proposed underlying mechanisms may comprise the release of tissue factor (TF), hyperfibrinolysis, shock, and hypoperfusion thus triggering the protein C pathway, disseminated intravascular coagulation, and platelet dysfunction. Hemocoagulative disorders after TBI may be amenable to treatment, and adequate and timely management may protect from secondary injury and poor outcomes. Functional assays such as viscoelastic tests may be supportive in early detection, diagnosis, and guidance of treatment. This review summarizes the current understanding with regard to frequency, pathogenesis, diagnosis, and treatment of the coagulopathy after TBI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/trf.12033 | DOI Listing |
J Trauma Acute Care Surg
February 2025
From the Department of Surgery, University of Cincinnati, Cincinnati, Ohio.
Background: Red blood cell (RBC) aggregation can be initiated by calcium and tissue factor, which may independently contribute to microvascular and macrovascular thrombosis after injury and transfusion. Previous studies have demonstrated that increased blood storage duration may contribute to thrombotic events. The aims of this study were to first determine the effect of blood product components, age, and hematocrit (HCT) on the aggregability of RBCs, followed by measurement of RBC aggregability in two specific injury models including traumatic brain injury (TBI) and hemorrhagic shock.
View Article and Find Full Text PDFChin J Integr Med
January 2025
Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
Objective: To explore the neuroprotective effects of Xuefu Zhuyu Decoction (XFZYD) based on in vivo and metabolomics experiments.
Methods: Traumatic brain injury (TBI) was induced via a controlled cortical impact (CCI) method. Thirty rats were randomly divided into 3 groups (10 for each): sham, CCI and XFZYD groups (9 g/kg).
Biomedicines
November 2024
Brain Trauma Neuroprotection, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
Traumatic brain injury (TBI) is a global public health concern. It remains one of the leading causes of morbidity and mortality. TBI pathology involves complex secondary injury cascades that are associated with cellular and molecular dysfunction, including oxidative stress, coagulopathy, neuroinflammation, neurodegeneration, neurotoxicity, and blood-brain barrier (BBB) dysfunction, among others.
View Article and Find Full Text PDFClin Neurol Neurosurg
December 2024
Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran. Electronic address:
Progressive hemorrhagic injury (PHI) is a frequent complication of traumatic brain injury (TBI). This study aims to investigate the impact of coagulation factors (platelet [PLT], prothrombin time [PT], activated partial thromboplastin time [aPTT], international normalized ratio , fibrinogen [Fg], D-dimer [Dd], and fibrin [Fib]) at admission and PHI development through a comprehensive systematic review and meta-analysis based on PRISMA 2020 guideline. Databases including PubMed, Scopus, Web of Science, and Embase were searched up to March 2024.
View Article and Find Full Text PDFAnn Clin Transl Neurol
January 2025
Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
Objective: The short-term efficacy of red blood cell (RBC) transfusion among general traumatic brain injury (TBI) patients is unclear.
Methods: We used the MIMIC database to compare the efficacy of liberal (10 g/dL) versus conservative (7 g/dL) transfusion strategy in TBI patients. The outcomes were neurological progression (decrease of Glasgow coma scale (GCS) of at least 2 points) and death within 28 days of ICU admission.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!