As the use of silver nanoparticles (AgNPs) is increasing fast in industry, food, medicines, etc., exposure to AgNPs is increasing in quantity day by day. So, it is imperative to know the adverse effects of AgNPs in man. In this study, we selected mice as an animal model and observed the effect of AgNPs on small intestinal mucosa. AgNPs ranging from 3 to 20 nm were administered orally at a dose of 5, 10, 15 and 20 mg/kg body weight to the Swiss-albino male mice for 21 d. There was a significant decrease (p < 0.05) in the body weight of mice in all the AgNPs-treated groups. Mice treated at a dose of 10 mg/kg showed the maximum weight loss. Effects were noted by using light microscopy as well as transmission electron microscopy. It was found that AgNPs damage the epithelial cell microvilli as well as intestinal glands. It may be hypothesized that loss of microvilli reduced absorptive capacity of intestinal epithelium and hence weight loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/15376516.2013.764950 | DOI Listing |
Sci Rep
December 2024
School of Biomedical Sciences, Suzhou Chien-shiung Institute of Technology, Suzhou, 215411, People's Republic of China.
Over the past decades, bacterial infections resulting from the misuse of antibiotics have garnered significant attention. Among the alternative antibacterial strategies, photodynamic therapy (PDT) has emerged as a promising non-antibiotic approach. However, persistent bacterial biofilms, particularly those composed of gram-negative bacteria with their protective outer membranes, have exhibited remarkable resilience to PDT.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, India.
The fabricating of extremely effective, economical, ecologically safe, and reusable nanoparticle (NP) catalysts for the removal of water pollution is urgently needed. This study, spectroscopically optimizes the process parameters for the biogenic synthesis of AgNP catalysts using Cledrdendrum infortunatum leaf extract. The optimization of several synthesis parameters was systematically studied using UV-Vis spectroscopy to identify the ideal conditions for AgNPs formation.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China. Electronic address:
Silver nanoparticles (AgNPs) exhibit broad-spectrum antibacterial activity and serve as effective antimicrobial agents against antibiotic-resistant bacteria. In this study, agricultural waste corn straw was used as the raw material to obtain cellulose nanocrystal (CNC) through enzymatic hydrolysis. The hydrolysate was employed as reducing agents to synthesize CNC-AgNPs.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Engineering, Norfolk State University, Norfolk, USA.
We report a controlled deposition process using atmospheric plasma to fabricate silver nanoparticle (AgNP) structures on polydimethylsiloxane (PDMS) substrates, essential for stretchable electronic circuits in wearable devices. This technique ensures precise printing of conductive structures using nanoparticles as precursors, while the relationship between crystallinity and plasma treatment is established through X-ray diffraction (XRD) analysis. The XRD studies provide insights into the effects of plasma parameters on the structural integrity and adhesion of AgNP patterns, enhancing our understanding of substrate stretchability and bendability.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
Rhazya stricta, a perennial shrub native to the Middle East and South Asia, has been used in traditional medicine for various therapeutic purposes, including antimicrobial action. The current study aimed to compare the antifungal properties of 96% and 50% ethanolic extracts of R. stricta leaves and their biogenic silver nanoparticles (AgNPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!