Characterization of Cu-SSZ-13 NH3 SCR catalysts: an in situ FTIR study.

Phys Chem Chem Phys

Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99352, USA.

Published: February 2013

The adsorption of CO and NO over Cu-SSZ-13 zeolite catalysts, highly active in the selective catalytic reduction of NO(x) with NH(3), was investigated by FTIR spectroscopy, and the results obtained were compared to those collected from other Cu-ion exchanged zeolites (Y,FAU and ZSM-5). Under low CO pressures and at room temperature (295 K), CO forms monocarbonyls exclusively on the Cu(+) ions, while in the presence of gas phase CO dicarbonyls on Cu(+) and adsorbed CO on Cu(2+) centers form, as well. At low (cryogenic) sample temperatures, tricarbonyl formation on Cu(+) sites was also observed. The adsorption of NO produces IR bands that can be assigned to nitrosyls bound to both Cu(+) and Cu(2+) centers, and NO(+) species located in charge compensating cationic positions of the chabasite framework. On the reduced Cu-SSZ-13 samples the formation of N(2)O was also detected. The assignment of the adsorbed NO(x) species was aided by adsorption experiments with isotopically labeled (15)NO. The movement of Cu ions from the sterically hindered six member ring position to the more accessible cavity positions as a result of their interaction with adsorbates (NO and H(2)O) was clearly evidenced. Comparisons of the spectroscopy data obtained in the static transmission IR system to those collected in the flow-through diffuse reflectance cell points out that care must be taken when general conclusions are drawn about the adsorptive and reactive properties of metal cation centers based on a set of data collected under well defined, specific experimental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cp43467aDOI Listing

Publication Analysis

Top Keywords

cu2+ centers
8
characterization cu-ssz-13
4
cu-ssz-13 nh3
4
nh3 scr
4
scr catalysts
4
catalysts situ
4
situ ftir
4
ftir study
4
study adsorption
4
adsorption cu-ssz-13
4

Similar Publications

Selective catalytic oxidation (SCO) of NH to N is one of the most effective methods used to eliminate NH emissions. However, achieving high conversion over a wide operating temperature range while avoiding over-oxidation to NO remains a significant challenge. Here, we report a bi-metallic surficial catalyst (PtCuO/AlO) with improved Pt atom efficiency that overcomes the limitations of current catalysts.

View Article and Find Full Text PDF

Large Manipulation of Ferrimagnetic Curie Temperature by A-Site Chemical Substitution in ACuFeReO (A = Na, Ca, and La) Half Metals.

Inorg Chem

January 2025

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

CaCuFeReO and LaCuFeReO quadruple perovskite oxides are well known for their high ferrimagnetic Curie temperatures and half-metallic electronic structures. By A-site chemical substitution with lower valence state Na, an isostructural compound NaCuFeReO with both A- and B-site ordered quadruple perovskite structures in -3 symmetry was prepared using high-pressure and high-temperature techniques. The X-ray absorption study demonstrates the valence states to be Cu, Fe, and Re.

View Article and Find Full Text PDF

Copper-coordination driven brain-targeting nanoassembly for efficient glioblastoma multiforme immunotherapy by cuproptosis-mediated tumor immune microenvironment reprogramming.

J Nanobiotechnology

December 2024

Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.

Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.

View Article and Find Full Text PDF

Crown ether is widely used in water purification because of its ring structure and good selective adsorption of specific heavy metals. However, its high cost and difficulty in recycling limit the purification of heavy metals in water. The anisotropic [2,4]-dibenzo-18-crown-6-modified bamboo pulp aerogel (DB18C6/PA) is successfully synthesized by microwave irradiation and directional freezing technology.

View Article and Find Full Text PDF

Carboxymethyl hexanoyl chitosan drop-coated simple disposable paper electrochemical sensor for quality monitoring of vanillin.

Int J Biol Macromol

December 2024

Nanomaterial research laboratory (NMRL), Smart Materials And Devices, Yenepoya Research Centre, Yenepoya (Deemed to be university), Deralakatte, Mangalore 575 018, India; Centre for Nutrition Studies, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India. Electronic address:

The food and pharmaceutical sectors frequently utilize vanillin (VAN), a food ingredient with a pleasing flavor and aroma. However, excessive consumption of VAN causes several health problems, including liver and kidney damage, headaches, skin conditions, nausea, and vomiting. To prevent health problems, it is crucial to identify and control the amount of VAN in food and drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!