Background: Carbon dioxide (CO(2)) is a recognized vasodilator of myocardial blood vessels that leads to changes in myocardial oxygenation through the recruitment of the coronary flow reserve. Yet, it is unknown whether changes of carbon dioxide induced by breathing maneuvers can be used to modify coronary blood flow and thus myocardial oxygenation. Oxygenation-sensitive cardiovascular magnetic resonance (CMR) using the blood oxygen level-dependent (BOLD) effect allows for non-invasive monitoring of changes of myocardial tissue oxygenation. We hypothesized that mild hypercapnia induced by long breath-holds leads to changes in myocardial oxygenation that can be detected by oxygenation-sensitive CMR.
Methods And Results: In nine anaesthetized and ventilated pigs, 60s breath-holds were induced. Left ventricular myocardial and blood pool oxygenation changes, as monitored by oxygenation-sensitive CMR using a T2*-weighted steady-state-free-precession (SSFP) sequence at 1.5T, were compared to changes of blood gas levels obtained immediately prior to and after the breath-hold. Long breath-holds resulted in an increase of paCO(2), accompanied by a decrease of paO(2) and pH. There was a significant decrease of blood pressure, while heart rate did not change. A decrease in the left ventricular blood pool oxygenation was observed, which was similar to drop in SaO(2). Oxygenation in the myocardial tissue however, was maintained throughout the period. Changes in myocardial oxygenation were strongly correlated with the change in paCO(2) during the breath-hold (r = 0.90, p = 0.010).
Conclusion: Despite a drop in blood oxygen levels, myocardial oxygenation is maintained throughout long breath-holds and is linearly correlated with the parallel increase of arterial CO(2), a known coronary vasodilator. Breathing maneuvers in combination with oxygenation-sensitive CMR may be useful as a diagnostic test for coronary artery function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536756 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053282 | PLOS |
Apoptosis
January 2025
Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China.
Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, 401336 Chongqing, China.
Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.
Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.
Int J Mol Sci
January 2025
Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondria, Oxidative Stress and Muscle Plasticity", Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France.
Peripheral blood mononuclear cells' (PBMCs) mitochondrial respiration is impaired and likely involved in myocardial injury and heart failure pathophysiology, but its response to acute and severe hypoxia, often associated with such diseases, is largely unknown in humans. We therefore determined the effects of acute hypoxia on PBMC mitochondrial respiration and ROS production in healthy volunteers exposed to controlled oxygen reduction, achieving an inspired oxygen fraction of 10.5%.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Cardiology, Angiology and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany.
Cardiogenic shock remains a significant cause of mortality in patients with acute coronary syndrome, despite early interventions, such as coronary revascularization. Mechanical circulatory support devices, particularly venoarterial extracorporeal membrane oxygenation (VA-ECMO), are increasingly being utilized to address this issue. Limited randomized controlled trials (RCTs) exist to evaluate the efficacy of VA-ECMO in cardiogenic shock related to acute coronary syndrome.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Department of Medicinal & Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan 15588, Republic of Korea.
Cardiac ischemia-reperfusion injury (IRI) occurs when blood flow is restored to the myocardium after a period of ischemia, leading to oxidative stress and subsequent myocardial cell damage, primarily due to the accumulation of reactive oxygen species (ROS). In our previous research, we identified that miR-25 is significantly overexpressed in pressure overload-induced heart failure, and its inhibition improves cardiac function by restoring the expression of SERCA2a, a key protein involved in calcium regulation. In this study, we aimed to investigate the role of miR-25 in the context of ischemia-reperfusion injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!