Background: Climate change will lead to intense selection on many organisms, particularly during susceptible early life stages. To date, most studies on the likely biotic effects of climate change have focused on the mean responses of pooled groups of animals. Consequently, the extent to which inter-individual variation mediates different selection responses has not been tested. Investigating this variation is important, since some individuals may be preadapted to future climate scenarios.

Methodology/principal Findings: We examined the effect of CO(2)-induced pH changes ("ocean acidification") in sperm swimming behaviour on the fertilization success of the Australasian sea urchin Heliocidaris erythrogramma, focusing on the responses of separate individuals and pairs. Acidification significantly decreased the proportion of motile sperm but had no effect on sperm swimming speed. Subsequent fertilization experiments showed strong inter-individual variation in responses to ocean acidification, ranging from a 44% decrease to a 14% increase in fertilization success. This was partly explained by the significant relationship between decreases in percent sperm motility and fertilization success at ΔpH = 0.3, but not at ΔpH = 0.5.

Conclusions And Significance: The effects of ocean acidification on reproductive success varied markedly between individuals. Our results suggest that some individuals will exhibit enhanced fertilization success in acidified oceans, supporting the concept of 'winners' and 'losers' of climate change at an individual level. If these differences are heritable it is likely that ocean acidification will lead to selection against susceptible phenotypes as well as to rapid fixation of alleles that allow reproduction under more acidic conditions. This selection may ameliorate the biotic effects of climate change if taxa have sufficient extant genetic variation upon which selection can act.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531373PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053118PLOS

Publication Analysis

Top Keywords

ocean acidification
16
climate change
16
fertilization success
16
reproductive success
8
will lead
8
biotic effects
8
effects climate
8
inter-individual variation
8
sperm swimming
8
success
6

Similar Publications

Yolk and Casein Sequence Self-Assembly for Low-Oil Emulsion Gel and Its Application in Low-Fat Mayonnaise.

Foods

December 2024

National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

High dietary fat food such as mayonnaise (70-80% oil content) can induce obesity and cardiovascular diseases, thus reducing their oil content is required. However, the development of low-fat mayonnaise is still a big challenge since reducing oil content will increase the fluidity, induce phase separation and decrease the stability of mayonnaise. Herein, we provide a novel strategy for developing yolk-casein-based low-fat mayonnaise (30% oil content) with a similar texture to commercial high-fat mayonnaise through post-acidification.

View Article and Find Full Text PDF

Sensitivity of pteropod calcification to multi stressor variability in coastal habitats.

Mar Environ Res

December 2024

School of Oceanography, University of Washington, 1492 NE Boat St., Seattle, WA, 98105, USA; Applied Physics Laboratory, University of Washington, Box 355640, Seattle, WA, 98105, USA.

Comprehensive understanding of environmental multiple stressors on calcification in marine calcifiers remains an important topic of study, especially under ocean global change associated with multiple stressors. We explore the impact of multiple stressor on pteropod calcification in the southern Salish Sea (Washington, U.S.

View Article and Find Full Text PDF

Global oceans are warming and acidifying because of increasing greenhouse gas emissions that are anticipated to have cascading impacts on marine ecosystems and organisms, especially those essential for biodiversity and food security. Despite this concern, there remains some skepticism about the reproducibility and reliability of research done to predict future climate change impacts on marine organisms. Here, we present meta-analyses of over two decades of research on the climate change impacts on an ecologically and economically valuable Sydney rock oyster, .

View Article and Find Full Text PDF

A major obstacle to exploiting industrial flue gas for microalgae cultivation is the unfavorable acidic environment. We previously identified three upregulated genes in the low-pH-adapted model diatom : ferredoxin (PtFDX), cation/proton antiporter (PtCPA), and HCO transporter (PtSCL4-2). Here, we individually overexpressed these genes in to investigate their respective roles in resisting acidic stress (pH 5.

View Article and Find Full Text PDF

Ocean acidification and global warming may favor blue carbon service in a Cymodocea nodosa community by modifying carbon metabolism and dissolved organic carbon fluxes.

Mar Pollut Bull

January 2025

Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.

Ocean acidification (OA) and global warming (GW) drive a variety of responses in seagrasses that may modify their carbon metabolism, including the dissolved organic carbon (DOC) fluxes and the organic carbon stocks in upper sediments. In a 45-day full-factorial mesocosm experiment simulating forecasted CO and temperature increase in a Cymodocea nodosa community, we found that net community production (NCP) was higher under OA conditions, particularly when combined with warming (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!