When grown in 3D cultures as spheroids, mesothelioma cells acquire a multicellular resistance to apoptosis that resembles that of solid tumors. We have previously found that resistance to the proteasome inhibitor bortezomib in 3D can be explained by a lack of upregulation of Noxa, the pro-apoptotic BH3 sensitizer that acts via displacement of the Bak/Bax-activator BH3-only protein, Bim. We hypothesized that the histone deacetylase inhibitor vorinostat might reverse this block to Noxa upregulation in 3D. Indeed, we found that vorinostat effectively restored upregulation of Noxa protein and message and abolished multicellular resistance to bortezomib in the 3D spheroids. The ability of vorinostat to reverse resistance was ablated by knockdown of Noxa or Bim, confirming the essential role of the Noxa/Bim axis in the response to vorinostat. Addition of vorinostat similarly increased the apoptotic response to bortezomib in another 3D model, the tumor fragment spheroid, which is grown from human mesothelioma ex vivo. In addition to its benefit when used with bortezomib, vorinostat also enhanced the response to cisplatin plus pemetrexed, as shown in both 3D models. Our results using clinically relevant 3D models show that the manipulation of the core apoptotic repertoire may improve the chemosensitivity of mesothelioma. Whereas neither vorinostat nor bortezomib alone has been clinically effective in mesothelioma, vorinostat may undermine chemoresistance to bortezomib and to other therapies thereby providing a rationale for combinatorial strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530471PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0052753PLOS

Publication Analysis

Top Keywords

multicellular resistance
12
vorinostat
9
upregulation noxa
8
vorinostat reverse
8
mesothelioma vorinostat
8
bortezomib
6
resistance
5
mesothelioma
5
noxa
5
vorinostat eliminates
4

Similar Publications

Background: In aging societies, neurodegenerative diseases, such as Alzheimer's disease, are receiving attention. These diseases are primary targets for preemptive medicine, emphasizing the importance of early detection and preventive treatment before the onset of severe, treatment-resistant damages. However, there is a lack of comprehensive investigation of lesions and molecular targets in the entire organ, whereas spatial identification of early-stage lesions is potentially overlooked at the single-cell level.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) are one of the key immunosuppressive components in the tumor microenvironment (TME) and contribute to tumor development, progression, and resistance to cancer immunotherapy. Several reagents targeting TAMs have been tested in preclinical and clinical studies, but they have had limited success. Here, we show that a unique reagent, FF-10101, exhibited a sustained inhibitory effect against colony-stimulating factor 1 receptor by forming a covalent bond and reduced immunosuppressive TAMs in the TME, which led to strong antitumor immunity.

View Article and Find Full Text PDF

Synergistic Anti-Cancer Effects of Curcumin and Thymoquinone Against Melanoma.

Antioxidants (Basel)

December 2024

Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.

Combining anti-cancer agents in cancer therapies is becoming increasingly common because of their improved efficacy, reduced toxicity, and decreased risk of resistance development. Melanoma, a highly aggressive form of skin cancer characterized by limited treatment options due to chemoresistance, poses a considerable challenge for effective management. Here, we test the hypothesis that dietary supplements such as thymoquinone (TQ) and curcumin (CU) cooperatively modulate cancer-associated cellular mechanisms to inhibit melanoma progression.

View Article and Find Full Text PDF
Article Synopsis
  • Biofilms, which are multicellular bacterial communities embedded in an extracellular matrix, enhance bacterial survival and contribute to severe infections due to their increased antibiotic resistance.
  • Quorum sensing plays a critical role in biofilm production, making it essential to develop new strategies to combat biofilm-related infections, particularly for conditions like post-surgery and wound infections.
  • Plant extracts and purified phytochemicals have shown significant potential in inhibiting biofilm formation and may serve as promising agents in treating infections caused by biofilms.
View Article and Find Full Text PDF

Biomimetic Topological Micropattern Arrays Regulate the Heterogeneity of Cellular Fates in Lung Fibroblasts between Fibrosis and Invasion.

ACS Nano

January 2025

Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

Article Synopsis
  • Idiopathic pulmonary fibrosis (IPF) involves persistent lung tissue injury and abnormal healing, with key roles played by myofibroblasts transitioning from fibroblasts and depositing extracellular matrix (ECM).
  • Research using engineered ECM micropatterns revealed that isotropic fibroblasts exhibited invasive characteristics and high expression of specific markers, while anisotropic fibroblasts adopted a more normal remodeling phenotype.
  • The study highlights how cellular topology affects fibroblast behavior and interactions with the ECM, which could contribute to worsening fibrosis and potentially create an environment that promotes cancer development.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!