Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Palpation of brain stiffness is one of techniques that leads to successful neurosurgical procedures. In order to evaluate brain stiffness quantitatively, we studied the potential clinical applicability of a spherical indenting tactile sensor.
Methods: The sensor had a spherical rigid indenter (diameter=5.0 mm; contact pressure=1.0 gf/mm2), and the indenter was rapidly pushed and pulled at a constant speed by a computer-controlled motor. The pressure-depth hysteresis curve was obtained using the sensor, and the shear elastic modulus (G) was calculated on the basis of the Hertz contact theory. We adopted the G-value at the maximum depth (G_max) as an indicator of brain stiffness.
Results: First, to calibrate the sensor, we investigated the elasticity of silicone plates. The optimal settings for clinical application was an indenting speed of 1.5 mm/s and an indenting maximum depth of 2-3 mm. Next, we measured the elasticity of a decompressive site in 7 patients who had been stable for more than 21 days after undergoing decompressive craniectomy. The G_max of the decompressive site was 1.71 ± 0.75 kPa. Finally, we measured the intraoperative brain elasticity in a case of brain tumor with severe brain edema. The transdural elasticity of the edematous brain was G=4.87 kPa, and the direct elasticity of the brain surface decreased to G=4.34 kPa after dura incision.
Conclusions: The spherical indentation method for measuring brain elasticity seems applicable to neurosurgical procedures.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!