There is clinical evidence that des-acyl ghrelin (DAG) favorably modulates glucose and lipid metabolism, although its mode of action is unknown. A murine model of prediabetes was used to assess possible mechanisms of action for DAG and a newly developed bioactive analog, AZP531. C57BL/6J mice were infused with saline, DAG, or AZP531 continuously for 4 wk, and fed either normal diet (ND) or normal diet for 2 wk followed by a high-fat diet (HFD) for 2 wk. Compared with mice in the ND group, HFD increased body and fat mass, caused glucose intolerance and insulin resistance, had proinflammatory effects in white adipose tissue, and caused lipid accumulation in brown adipose tissue. DAG and AZP531 treatment prevented HFD-induced proinflammatory effects, stimulated expression of mitochondrial function markers in brown adipose tissue, and prevented development of a prediabetic metabolic state. AZP531 also prevented a HFD-induced increase in acyl ghrelin levels. Our data indicate DAG analogs as potential treatment for the prevention of metabolic syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.12-221143DOI Listing

Publication Analysis

Top Keywords

adipose tissue
12
des-acyl ghrelin
8
dag azp531
8
normal diet
8
proinflammatory effects
8
brown adipose
8
prevented hfd-induced
8
dag
5
ghrelin analogs
4
analogs prevent
4

Similar Publications

Body composition abnormalities are prognostic markers in several types of cancer, including colorectal cancer (CRC). Using our data distribution on body composition assessments and classifications could improve clinical evaluations and support population-specific opportune interventions. This study aimed to evaluate the distribution of body composition from computed tomography and assess the associations with overall survival among patients with CRC.

View Article and Find Full Text PDF

Microalgae, have emerged as a potentially promising feed additive option due to their beneficial nutritional profile rich in bioactive compounds. The present study examines the incorporation of Chlorella sorokiniana (at 0.1% and 1%) into chicken feed compared to control feed and its effect on growth and health parameters of poultry grown at pilot plant scale.

View Article and Find Full Text PDF

Nesfatin-1 is a crucial regulator of energy homeostasis in mammals and fishes, however, its metabolic role remains completely unexplored in amphibians, reptiles, and birds. Therefore, present study elucidates role of nesfatin-1 in glucose homeostasis in wall lizard wherein fasting stimulated hepatic nucb2/nesfatin-1, glycogen phosphorylase (glyp), phosphoenolpyruvate carboxykinase (pepck), and fructose 1,6-bisphosphatase (fbp), while feeding upregulated pancreatic nucb2/nesfatin-1 and insulin, suggesting towards tissue-specific dual role of nesfatin-1 in glucoregulation. The glycogenolytic/gluconeogenic role of nesfatin-1 was further confirmed by an increase in media glucose levels along with heightened hepatic pepck and fbp expression and concomitant decline in liver glycogen content in nesfatin-1-treated liver of wall lizard.

View Article and Find Full Text PDF

The escalating global demand for meat products has intensified ecological concerns, underscoring the need for sustainable meat alternatives. Although current methods effectively imitate ground meat, mimicking whole cuts, which constitute 54% of the global market, remains challenging due to the lack of scalable technology. Injection molding is a massively scalable manufacturing technology developed for the polymer industry.

View Article and Find Full Text PDF

Background & objectives Our study aims to provide the diversity of stem cell use for non-malignant, non-haematological diseases in India through the lens of clinical trials. Methods A PRISMA approach was used to evaluate the safety and efficacy of stem cell use for the period 2001-2021 in India. The outcomes were measured using each disease category, types of stem cells, the origin of stem cells, safety, and efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!