Brown algae are an extremely interesting, but surprisingly poorly explored, group of organisms. They are one of only five eukaryotic lineages to have independently evolved complex multicellularity, which they express through a wide variety of morphologies ranging from uniseriate branched filaments to complex parenchymatous thalli with multiple cell types. Despite their very distinct evolutionary history, brown algae and land plants share a striking amount of developmental features. This has led to an interest in several aspects of brown algal development, including embryogenesis, polarity, cell cycle, asymmetric cell division and a putative role for plant hormone signalling. This review describes how investigations using brown algal models have helped to increase our understanding of the processes controlling early embryo development, in particular polarization, axis formation and asymmetric cell division. Additionally, the diversity of life cycles in the brown lineage and the emergence of Ectocarpus as a powerful model organism, are affording interesting insights on the molecular mechanisms underlying haploid-diploid life cycles. The use of these and other emerging brown algal models will undoubtedly add to our knowledge on the mechanisms that regulate development in multicellular photosynthetic organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-62703-221-6_6 | DOI Listing |
Lett Appl Microbiol
January 2025
Laboratory for Chemical, Galenic and Pharmacological Development of Drugs (LR12ES09), Faculty of Pharmacy of Monastir, University of Monastir, Tunisia.
Brown seaweeds are known for their bioactive compounds, particularly sulfated polysaccharides such as fucoidans, which have demonstrated antiviral properties. However, limited studies have focused on the antiviral potential of fucoidans extracted from Mediterranean brown seaweeds. In this study, two brown seaweeds Padina pavonica and Dictyopteris membranacea (Fuc-Pad and Fuc-Dic) were collected from monastir coasts, Tunisia, and a specific extraction protocol was employed to obtain fucoidans.
View Article and Find Full Text PDFSci Rep
January 2025
Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France.
The initiation of embryogenesis in the kelp Saccharina latissima is accompanied by significant anisotropy in cell shape. Using monoclonal antibodies, we show that this anisotropy coincides with a spatio-temporal pattern of accumulation of alginates in the cell wall of the zygote and embryo. Alginates rich in guluronates as well as sulphated fucans show a homogeneous distribution in the embryo throughout Phase I of embryogenesis, but mannuronate alginates accumulate mainly on the sides of the zygote and embryo, disappearing as the embryo enlarges at the start of Phase II.
View Article and Find Full Text PDFViruses
December 2024
Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK.
Seaweed-derived compounds are a renewable resource utilised in the manufacturing and food industry. This study focuses on an enriched seaweed extract (ESE) isolated from The ESE was screened for antiviral activity by plaque reduction assays against influenza A/Puerto Rico/8/1934 H1N1 (PR8), A/X-31 H3N2 (X31) and A/England/195/2009 H1N1 (Eng195), resulting in the complete inhibition of infection. Time of addition assays and FACS analysis were used to help determine the modes of action.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain.
is an invasive brown macroalga that has recently proliferated in the western Mediterranean Sea, causing significant environmental challenges. This alga, however, contains valuable bioactive compounds-alginate, mannitol, and phlorotannins-that can serve as biofertilizers to promote plant growth and aid in bioremediation of degraded or contaminated soils. This study focused on optimizing the extraction of these compounds from , transforming an ecological issue into a beneficial resource.
View Article and Find Full Text PDFNutrients
December 2024
Foodomics Lab, Institute of Food Science Research (CIAL, CSIC), 28049 Madrid, Spain.
Systematic Alzheimer's disease (AD) is a neurodegenerative disease increasingly prevalent in the aging population. AD is characterized by pathological features such as -amyloid (A) plaque accumulation, tau neurofibrillary tangles formation, oxidative stress, an impaired cholinergic system, and neuroinflammation. Many therapeutic drugs have been developed to slow the progression of AD by targeting these pathological mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!