Aucsia is a green plant gene family. In Angiosperms, Aucsia genes control several aspects of auxin biology, including polar auxin transport. AUCSIA miniproteins are produced via splicing of three exons. The first two exons span the conserved AUCSIA motif, while the third exon(s) encodes the more variable carboxyterminal end. AUCSIA presence in green algae indicates that the Aucsia gene family predated the emergence of land plants and the complex auxin biology of Angiosperms. In algae, however, AUCSIA might have been involved in a primitive auxin biology, when auxin was just a simple metabolite, probably noxious at high concentrations, and consequently pump out via the ancestral auxin exporters, i.e., ABCB1/19 homologs. This speculative scenario implies that in green algae AUCSIA is involved in controlling the ABCB-dependent efflux of noxious metabolites, including auxin. Such speculative hypothesis might be tested in living green algae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656992 | PMC |
http://dx.doi.org/10.4161/psb.22928 | DOI Listing |
Microb Ecol
January 2025
Department of Biotechnology, Center for Research and Innovation in Multidisciplinary Active Sciences (CIICAM), Chiclayo, Peru.
Microbial biotechnology employs techniques that rely on the natural interactions that occur in ecosystems. Bacteria, including rhizobacteria, play an important role in plant growth, providing crops with an alternative that can mitigate the negative effects of abiotic stress, such as those caused by saline environments, and increase the excessive use of chemical fertilizers. The present study examined the promoting potential of bacterial isolates obtained from the rhizospheric soil and roots of the Asparagus officinalis cultivar UF-157 F2 in Viru, la Libertad, Peru.
View Article and Find Full Text PDFBMC Genom Data
January 2025
Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
Objectives: The data were collected to obtain the complete genome sequence of Pseudarthrobacter sp. NIBRBAC000502770, isolated from the rhizosphere of Sasamorpha in a heavy metal-contaminated coal mine in Hongcheon, Republic of Korea. The objective was to explore the strain's genetic potential for plant growth promotion and heavy metal resistance, particularly arsenate and copper.
View Article and Find Full Text PDFPhysiol Plant
January 2025
International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China.
Plant architecture and subsequent productivity are determined by the shoot apical dominance, which is disturbed by the deficiency of boron, one of the essential trace elements for plant growth and reproduction. However, the mechanism by which B controls shoot apical dominance or axillary bud outgrows under B deficiency is still unclear. This work aimed to investigate the mechanistic basis of this process, with focus on the interaction between B and polar auxin transport.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
Laboratory of Research and Teaching in Animal Health and Biotechnology, Bobo-Dioulasso, Burkina Faso.
The growing human population and abiotic stresses pose significant threats to food security, with PGPR favorable as biofertilizers for plant growth and stress relief. In one study, soil samples from both cultivated and uncultivated plants in various cities were used to isolate rhizobacterial populations. Using 50 soil samples from both cultivated and uncultivated plants, isolated rhizobacterial populations were screened for various biochemical changes, PGP activities and morphological characteristics.
View Article and Find Full Text PDFPlanta
January 2025
Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil.
Both, Serendipita indica and AMF, show promise as sustainable biofertilizers for reforestation, improving nutrient uptake and stress tolerance, despite contrasting effects on photosynthetic capacity and biomass allocation. Reclaiming degraded areas is essential for biodiversity conservation and enhancing ecosystem services enhancement, especially when using native species. This study investigated Schinus terebinthifolius Raddi, a native Brazilian species, and its compatibility with plant growth-promoting microorganisms (PGPM), including an endophytic fungus (Serendipita indica) and a consortium of arbuscular mycorrhizal fungi (AMF), to identify effective strategies for reforestation in nutrient-poor environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!