Background: Hypotension and hypoxemia worsen traumatic brain injury outcomes. Hyperoxic resuscitation is controversial. The authors proposed that hyperoxia would improve hemodynamics and neuronal survival by augmenting oxygen delivery despite increased oxidative stress and neuroinflammation in experimental combined controlled cortical impact plus hemorrhagic shock in mice.
Methods: Adult C57BL6 mice received controlled cortical impact followed by 35 min of hemorrhagic shock (mean arterial pressure, 25-27 mmHg). The resuscitation phase consisted of lactated Ringer's boluses titrated to mean arterial pressure greater than 70 mmHg. Definitive care included returning shed blood. Either oxygen or room air was administered during the resuscitation phases. Brain tissue levels of oxidative stress and inflammatory markers were measured at 24 h and hippocampal neuronal survival was quantified at 7 days.
Results: Hyperoxia markedly increased brain tissue oxygen tension approximately four- to fivefold (n = 8) and reduced resuscitation fluid requirements approximately 15% (n = 53; both P < 0.05). Systemic and cerebral physiologic variables were not significantly affected by hyperoxia. Hippocampal neuron survival was approximately 40% greater with oxygen versus room air (n = 18, P = 0.03). However, ascorbate depletion doubled with oxygen versus room air (n = 11, P < 0.05). Brain tissue cytokines and chemokines were increased approximately 2- to 20-fold (n = 10) after combined controlled cortical impact injury plus hemorrhagic shock, whereas hyperoxia shifted cytokines toward a proinflammatory profile.
Conclusions: Hyperoxic resuscitation of cortical impact plus hemorrhagic shock reduced fluid requirements and increased brain tissue oxygen tension and hippocampal neuronal survival but exacerbated ascorbate depletion and neuroinflammation. The benefits of enhanced oxygen delivery during resuscitation of traumatic brain injury may outweigh detrimental increases in oxidative stress and neuroinflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/ALN.0b013e318280a42d | DOI Listing |
J Surg Res
January 2025
Center for Injury Science, University of Alabama at Birmingham, Birmingham, Alabama.
Introduction: Previous studies suggested that type O blood may be associated with increased mortality and/or thrombotic complications among trauma patients. The purpose of this analysis was to evaluate the relationship between endogenous blood type, mortality, and complications among patients receiving massive transfusions, using data from the Pragmatic Randomized Optimal Platelet and Plasma Ratios trial.
Materials And Methods: This was a secondary analysis of the Pragmatic Randomized Optimal Platelet and Plasma Ratios trial that included patients with the reported blood type (A, AB, B, or O) data.
JMIR Med Educ
January 2025
Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Background: Teaching severe pelvic trauma poses a significant challenge in orthopedic surgery education due to the necessity of both clinical reasoning and procedural operational skills for mastery. Traditional methods of instruction, including theoretical teaching and mannequin practice, face limitations due to the complexity, the unpredictability of treatment scenarios, the scarcity of typical cases, and the abstract nature of traditional teaching, all of which impede students' knowledge acquisition.
Objective: This study aims to introduce a novel experimental teaching methodology for severe pelvic trauma, integrating virtual reality (VR) technology as a potent adjunct to existing teaching practices.
J Trauma Acute Care Surg
November 2024
From the Department of Surgery and Sepsis and Critical Illness Research Center (J.A.M., L.S.K., E.E.P., C.G.A., K.B.K., L.E.B., P.A.E., A.M.M.), University of Florida College of Medicine, Gainesville; and The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences (G.P., R.N.), Florida State University College of Education, Health, and Human Sciences, Tallahassee, Florida.
Background: Traumatic injury leads to gut dysbiosis with changes in microbiome diversity and conversion toward a "pathobiome" signature characterized by a selective overabundance of pathogenic bacteria. The use of non-selective beta antagonism in trauma patients has been established as a useful adjunct to reduce systemic inflammation. We sought to investigate whether beta-adrenergic blockade following trauma would prevent the conversion of microbiome to a "pathobiome" phenotype.
View Article and Find Full Text PDFHepatic ischemia-reperfusion injury (IRI) poses a significant threat to clinical outcomes and graft survival during hemorrhagic shock, hepatic resection, and liver transplantation. Current pharmacological interventions for hepatic IRI are inadequate. In this study, we identified ginsenoside Rk2 (Rk2), a rare dehydroprotopanaxadiol saponin, as a promising agent against hepatic IRI through high-throughput screening.
View Article and Find Full Text PDFCureus
December 2024
Department of Obstetrics and Gynecology Faculty of Medicine, Fukuoka University, Fukuoka, JPN.
An adherent placenta is a life-threatening condition that impairs the mother's life owing to hemorrhagic shock and disseminated intravascular coagulation. Profound hemorrhage resulting from placental abruption is often managed using hysterectomy to preserve the mother's life, although the consequent loss of fertility can be devastating, particularly in younger women. Thus, strategies that facilitate fertility preservation while effectively controlling hemorrhage should be considered viable alternatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!