The spin-Hamiltonian parameters (g factors g(//), g(⊥) and zero-field splittings b(2)(0), b(4)(0), b(4)(4), b(6)(0), b(6)(4)) of the tetragonal Gd(M)(3+)-F(i)(-) centers in CaF(2) and SrF(2) crystals at T≈1.8K are calculated from the diagonalization (of energy matrix) method based on the one-electron crystal field mechanism. In the calculations, the crystal field parameters used are estimated from the superposition model with the reported defect structural data obtained from the analyses of superhyperfire interaction constants at the same temperature. The calculated results are in reasonable agreement with the experimental values. It appears that the above defect structural data reported in the previous paper are suitable and the diagonalization (of energy matrix) method is effective to the studies of spin-Hamiltonian parameters for 4f(7) ions in crystals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2012.12.003 | DOI Listing |
Molecules
November 2024
Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000 Zagreb, Croatia.
In this study, we report the syntheses, crystal structures and magnetic properties of ternary copper(II) coordination compounds with l-homoserine (l-Hhser) and 1,10-phenanthroline (phen). Six new coordination compounds were obtained: [Cu(l-hser)(HO)(phen)]SO·5HO (), [Cu(μ-l-hser)(HO)(phen)][Cu(l-hser)(HO)(phen)](SO)∙12HO (), {[Cu(μ-l-hser)(HO)(phen)][Cu(μ-l-hser)(phen)]SO·6HO} (), {[Cu(μ-l-hser)(HO)(phen)]SO·3HO} (), [Cu(l-hser)(HO)(phen)][Cu(l-hser)(CHOH)(phen)]SO·4HO () and {[Cu(l-hser)(CHOH)(phen)][Cu(μ-l-hser)(phen)]SO·5CHOH} () It was shown that slight differences in water content in the synthetic mixtures highly influence the final product, so in some cases, two or three different products were obtained. The compounds were characterized by single-crystal X-ray diffraction and ESR spectroscopy.
View Article and Find Full Text PDFChemistry
January 2025
Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, Mumbai, 400076, India.
Phys Chem Chem Phys
October 2024
Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
Organometallic sandwich complexes of Dy(III) ion are ubiquitous for designing high-temperature single-ion magnets with blocking temperatures close to the liquid nitrogen boiling point. Magnetic bistability at the molecular level makes them potential candidates for nano-scale information storage materials. In the present contribution, we have thoroughly investigated the electronic structure, bonding, covalency, and magnetic anisotropy of inorganic dysprosocene complexes with a general formula of [Dy(E)] (where E = N, P, As, CH) using state-of-the-art scalar relativistic density functional theory (SR-DFT), and a multiconfigurational complete active space self-consistent field (CASSCF) method with the N-electron valence perturbation theory (NEVPT2).
View Article and Find Full Text PDFDalton Trans
August 2024
Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
Four novel Co(II) coordination compounds 1-4 of the general formula [Co(L)][Co(NCY)]·CHCN (where L are tridentate ligands L1 = 2,6-bis(1-hexyl-1-benzimidazol-2-yl)pyridine for 1 and 2; L2 = 2,6-bis(1-octyl-1-benzimidazol-2-yl)pyridine for 3; L3 = 2,6-bis(1-dodecyl-1-benzimidazol-2-yl)pyridine for 4, Y = O for 1, 3, and 4 and Y = S for 2; = 0 for 1 and 3, = 0.5 for 2 and = 2 for 4) were prepared and characterised. The molecular structures of all four compounds consist of the hexacoordinate complex cation [Co(L)] and tetracoordinate complex anion [Co(NCY)], with distorted octahedral and tetrahedral symmetry of coordination polyhedra, respectively.
View Article and Find Full Text PDFSci Rep
July 2024
Institute of Physics AS CR, Na Slovance 2, 18221, Prague, Czech Republic.
Crystals of YGa(BO), YAl(BO), EuGa(BO) and EuAl(BO) with copper alloy were studied by electron paramagnetic resonance and X-ray diffraction analysis. The lattice parameters and coordinates of copper-doped boron atoms were determined. The study of EPR spectra showed that copper is in the divalent state and replaces aluminum ions with C node symmetry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!