Spin-Hamiltonian parameters for the tetragonal Gd(M)3+-F(i)- centers in CaF(2) and SrF(2) crystals.

J Magn Reson

State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronics Science and Technology of China, Chengdu, PR China.

Published: February 2013

The spin-Hamiltonian parameters (g factors g(//), g(⊥) and zero-field splittings b(2)(0), b(4)(0), b(4)(4), b(6)(0), b(6)(4)) of the tetragonal Gd(M)(3+)-F(i)(-) centers in CaF(2) and SrF(2) crystals at T≈1.8K are calculated from the diagonalization (of energy matrix) method based on the one-electron crystal field mechanism. In the calculations, the crystal field parameters used are estimated from the superposition model with the reported defect structural data obtained from the analyses of superhyperfire interaction constants at the same temperature. The calculated results are in reasonable agreement with the experimental values. It appears that the above defect structural data reported in the previous paper are suitable and the diagonalization (of energy matrix) method is effective to the studies of spin-Hamiltonian parameters for 4f(7) ions in crystals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2012.12.003DOI Listing

Publication Analysis

Top Keywords

spin-hamiltonian parameters
12
tetragonal gdm3+-fi-
8
gdm3+-fi- centers
8
centers caf2
8
caf2 srf2
8
srf2 crystals
8
diagonalization energy
8
energy matrix
8
matrix method
8
crystal field
8

Similar Publications

In this study, we report the syntheses, crystal structures and magnetic properties of ternary copper(II) coordination compounds with l-homoserine (l-Hhser) and 1,10-phenanthroline (phen). Six new coordination compounds were obtained: [Cu(l-hser)(HO)(phen)]SO·5HO (), [Cu(μ-l-hser)(HO)(phen)][Cu(l-hser)(HO)(phen)](SO)∙12HO (), {[Cu(μ-l-hser)(HO)(phen)][Cu(μ-l-hser)(phen)]SO·6HO} (), {[Cu(μ-l-hser)(HO)(phen)]SO·3HO} (), [Cu(l-hser)(HO)(phen)][Cu(l-hser)(CHOH)(phen)]SO·4HO () and {[Cu(l-hser)(CHOH)(phen)][Cu(μ-l-hser)(phen)]SO·5CHOH} () It was shown that slight differences in water content in the synthetic mixtures highly influence the final product, so in some cases, two or three different products were obtained. The compounds were characterized by single-crystal X-ray diffraction and ESR spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • Magnetic exchange coupling (J) is crucial for understanding the magnetic behavior of single-molecule magnets (SMMs), and while many chemical methods exist to modify it, non-chemical adjustments are less explored.
  • This study investigates how an Oriented-External Electric Field (OEEF) affects over twenty lanthanide-radical complexes using advanced computational techniques like Density Functional Theory (DFT) and ab initio methods.
  • Results show that OEEF significantly influences magnetic exchange interactions and structural parameters of selected complexes, with some showing enhanced ferromagnetic coupling and others even switching from antiferromagnetic to ferromagnetic interactions, indicating the potential of electric fields in developing materials with tunable magnetic properties.
View Article and Find Full Text PDF

Unravelling the electronic structure, bonding, and magnetic properties of inorganic dysprosocene analogues [Dy(E)] (E = N, P, As, CH).

Phys Chem Chem Phys

October 2024

Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.

Organometallic sandwich complexes of Dy(III) ion are ubiquitous for designing high-temperature single-ion magnets with blocking temperatures close to the liquid nitrogen boiling point. Magnetic bistability at the molecular level makes them potential candidates for nano-scale information storage materials. In the present contribution, we have thoroughly investigated the electronic structure, bonding, covalency, and magnetic anisotropy of inorganic dysprosocene complexes with a general formula of [Dy(E)] (where E = N, P, As, CH) using state-of-the-art scalar relativistic density functional theory (SR-DFT), and a multiconfigurational complete active space self-consistent field (CASSCF) method with the N-electron valence perturbation theory (NEVPT2).

View Article and Find Full Text PDF

Four novel Co(II) coordination compounds 1-4 of the general formula [Co(L)][Co(NCY)]·CHCN (where L are tridentate ligands L1 = 2,6-bis(1-hexyl-1-benzimidazol-2-yl)pyridine for 1 and 2; L2 = 2,6-bis(1-octyl-1-benzimidazol-2-yl)pyridine for 3; L3 = 2,6-bis(1-dodecyl-1-benzimidazol-2-yl)pyridine for 4, Y = O for 1, 3, and 4 and Y = S for 2; = 0 for 1 and 3, = 0.5 for 2 and = 2 for 4) were prepared and characterised. The molecular structures of all four compounds consist of the hexacoordinate complex cation [Co(L)] and tetracoordinate complex anion [Co(NCY)], with distorted octahedral and tetrahedral symmetry of coordination polyhedra, respectively.

View Article and Find Full Text PDF

Crystals of YGa(BO), YAl(BO), EuGa(BO) and EuAl(BO) with copper alloy were studied by electron paramagnetic resonance and X-ray diffraction analysis. The lattice parameters and coordinates of copper-doped boron atoms were determined. The study of EPR spectra showed that copper is in the divalent state and replaces aluminum ions with C node symmetry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!